Skip to main content

Publications

Please see the lists below for journal articles contributed to by our group members.

2018

  1. Zhang, N., Li, Z.-X., 2017. Formation of mantle “lone plumes” in the global downwelling zone — A multiscale modelling of subduction-controlled plume generation beneath the South China Sea. Tectonophysics, 723, 1-13.  https://doi.org/10.1016/j.tecto.2017.11.038
  2. Gong, Z., Xu, X., Evans, D.A.D., Hoffman, P.F., Mitchell, R.N., Bleeker, W., 2017. Paleomagnetism and rock magnetism of the ca. 1.87 Ga Pearson Formation, Northwest Territories, Canada: A test of vertical-axis rotation within the Great Slave basin. Precambrian Research, 305, 295-309. https://doi.org/10.1016/j.precamres.2017.11.021
  3. Palozzi, J., Pantopoulos, G., Maravelis, A.G., Nordsvan, A., Zelilidis, A., 2017. Sedimentological analysis and bed thickness statistics from a Carboniferous deep-water channel-levee complex: Myall Trough, SE Australia. Sedimentary Geology, v. 364, p. 160-179.  https://doi.org/10.1016/j.sedgeo.2017.12.019
  4. Nordsvan, A.R., Collins, W.J., Li, Z.X., Spencer, C.J., Pourteau, A., Withnall, I.W., Betts, P.G., Volante, S., 2018. Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna. Geology, In Press. https://doi.org/10.1130/G39980.1
  5. Spencer, C.J., Murphy, J.B., Kirkland, C.L., Liu, Y., Mitchell, R.N., 2018. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nature Geoscience, v. 11, p. 97-101. https://doi.org/10.1038/s41561-017-0051-y
  6. Kirscher, U., Winklhofer, M., Hackl, M., Bachtadse, V., 2018. Detailed Jaramillo field reversals recorded in lake sediments from Armenia – Lower mantle influence on the magnetic field revisited. Earth and Planetary Science Letters, v. 484, p. 124-134.  https://doi.org/10.1016/j.epsl.2017.12.010
  7. Antill, L.M., Beardmore, J.P., Woodward, J.R., 2018. Time-resolved optical absorption microspectroscopy of magnetic field sensitive flavin photochemistry. Review of Scientific Instruments, v. 89, 023707.  https://doi.org/10.1063/1.5011693
  8. Dallanave, E., Kirscher, U., Hauck, J., Hesse, R., Bachtadse, V., Wortmann, U.G., 2018. Paleomagnetic time and space constraints of the Early Cretaceous Rhenodanubian Flyschzone (Eastern Alps). Geophysical Journal International, ggy077. https://doi.org/10.1093/gji/ggy077
  9. Zhang, N., Dang, Z., Huang, C., Li, Z.X., 2018. The dominant driving force for supercontinent breakup: Plume push or subduction retreat? Geoscience Frontiers, In Press. https://doi.org/10.1016/j.gsf.2018.01.010
  10. Cox, G.M., Lyons, T.W., Mitchell, R.N., Hasteroka, D., Garda, M., 2018. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth and Planetary Science Letters, v. 489, p. 28-36.  https://doi.org/10.1016/j.epsl.2018.02.016
  11. Priyatkina, N., Collins, W.J., Khudoley, A.K., Letnikova, E.F., Huang, H.Q., 2018. The Neoproterozoic evolution of the western Siberian Craton margin: U-Pb-Hf isotopic records of detrital zircons from the Yenisey Ridge and the Prisayan Uplift. Precambrian Research, v. 305, p. 197-217.  https://doi.org/10.1016/j.precamres.2017.12.014
  12. Pourteau A., Scherer E. E., Bast R., Schmidt A.,  Ebert L., 2018. Thermal evolution of an ancient subduction interface revealed by Lu–Hf garnet geochronology, Halilbağı Complex (Anatolia). Geoscience Frontiers, In Press.
  13. Wang, R., Weinberg, R.F., Collins, W.J., Richards, J.P, and Di-cheng Zhu, D.C., 2018. Origin of post-collisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth Science Reviews, In Press.
  14. Henderson, B.J., Collins, W.J., Murphy, J.B., Hand, M., 2018. A hafnium isotopic record of magmatic arcs and continental growth in the Iapetus Ocean: The contrasting evolution of Ganderia and the peri-Laurentian margin. Gondwana Research, In Press.  https://doi.org/10.1016/j.gr.2018.02.015
  15. Bhattacharya, S., Kemp, A.I.S., Collins, W.J., 2018. Response of zircon to melting and metamorphism in deep arc crust, Fiordland (New Zealand): implications for zircon inheritance in cordilleran granites. Contributions to Mineralogy and Petrology, 173: 28.  https://doi.org/10.1007/s00410-018-1446-5
  16. Ding, M., Zhang, N., 2018. Early Geologic History of the Moon. In: Cudnik B. (eds), Encyclopedia of Lunar Science. Springer.  https://doi.org/10.1007/978-3-319-05546-6_8-1
  17. Pourteau, A., Scherer, E.E., Schorn, S., Bast, R., Schmidt, A., Ebert, L., 2018. Thermal evolution of an ancient subduction interface revealed by Lu–Hf garnet geochronology, Halilbağı Complex (Anatolia). Geoscience Frontiers, In Press.  https://doi.org/10.1016/j.gsf.2018.03.004
  18. Stark, J.C., Wang, X.-C., Li, Z.-X., Rasmussen, B., Sheppard, S., Zi, J.-W., Clark, C., Hand, M., Li, W.-X., 2018. In situ U-Pb geochronology and geochemistry of a 1.13 Ga mafic dyke suite at Bunger Hills, East Antarctica: The end of the Albany-Fraser Orogeny. Precambrian Research, v. 310, p. 76-92.  https://doi.org/10.1016/j.precamres.2018.02.023
  19. Kuznetsov, N.B., Priyatkina, N.S., Rud’ko, S.V., Shatsillo, A.V., Collins, W.J., Romanyuk, T.V., 2018. Primary Data on U/Pb-Isotope Ages and Lu/Hf-Isotope Geochemical Systematization of Detrital Zircons from the Lopatinskii Formation (Vendian–Cambrian Transition Levels) and the Tectonic Nature of Teya–Chapa Depression (Northeastern Yenisei Ridge). Doklady Earth Sciences, v. 479(1), p. 286–289. https://doi.org/10.1134/S1028334X18030042
  20. Yao, W., Li, Z.X., Spencer, C.J., Martin, E.L., 2018. Indian-derived sediments deposited in Australia during Gondwana assembly. Precambrian Research, v. 312, p. 23-37.  https://doi.org/10.1016/j.precamres.2018.05.006
  21. Spencer, C.J., Dyck, B., Mottram, C.M., Roberts, N.M.W., Yao, W., Martin, E.L., 2018. Deconvolving the pre-Himalayan Indian margin – Tales of crustal growth and destruction. Geoscience Frontiers, In Press.  https://doi.org/10.1016/j.gsf.2018.02.007

2017

  1. Puetz, S.J., Condie, K.C., Pisarevsky, S.A., Davaille, A., Schwarz, C.J., Ganade, C.E., 2017. Quantifying the evolution of the continental and oceanic crust. Earth-Science Reviews, v. 164, p. 63-83. http://dx.doi.org/10.1016/j.earscirev.2016.10.011
  2. Belica, M.E., Tohver, E., Pisarevsky, S.A., Jourdan, F., Denyszyn, S., George. A.D., 2017. Middle Permian paleomagnetism of the Sydney Basin, Eastern Gondwana: Testing Pangea models and the timing of the end of the Kiaman Reverse Superchron. Tectonophysics, v. 699, p. 178-198. http://dx.doi.org/10.1016/j.tecto.2016.12.029
  3. Lubnina, N.V., Pisarevsky, S.A., Stepanova, A.V., Bogdanova, S.V., Sokolov, S.J., 2017. Fennoscandia before Nuna/Columbia: paleomagnetism of 1.98−1.96 Ga mafic rocks of the Karelian craton and paleogeographic implications. Precambrian Research, v. 292, p. 1-12. http://dx.doi.org/10.1016/j.precamres.2017.01.011
  4. Cawood, P.A., Pisarevsky, S.A., 2017. Laurentia-Baltica-Amazonia relations during Rodinia assembly. Precambrian Research, v. 292, p. 386-397. http://dx.doi.org/10.1016/j.precamres.2017.01.031
  5. Yao, W.H., Li, Z.X., Li, W.-X., Li, X.-H., 2017. Proterozoic tectonics of Hainan Island in supercontinent cycles: new insights from geochronological and isotopic results. Precambrian Research, v. 290, p. 86-100. http://dx.doi.org/10.1016/j.precamres.2017.01.001
  6. Ma, L., Wang, Q., Li, Z.X., Wyman, D.A., Yang, J.H., Wu, F.Y., Jiang, Z.Q., Gou, G.N., Guo, H.F., 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (~ 35 Ma): Insights from the Quguosha gabbros in southern Lhasa block. Gondwana Research, v. 41, p. 77-92. http://dx.doi.org/10.1016/j.gr.2016.02.005
  7. Goddéris, Y., Hir, G.L., Macouin, M., Donnadieu, Y., Hubert-Théou, L., Dera, G., Aretz, M., Fluteau, F., Li, Z.X., Halverson, G.P., 2017. Paleogeographic forcing of the strontium isotopic cycle in the Neoproterozoic. Gondwana Research, v. 42, p. 151-162. http://dx.doi.org/10.1016/j.gr.2016.09.013
  8. Liu, L., Li, Z., Li, S., Zhu, K., Cui, F.,2017. Early Cretaceous basin framework in northwest Jiaobei region: evidence from SHRIMP zircon U-Pb dating for “Penglai Group” at Qimudao. Marine Geology and Quarternary Geology 37, 126-136 (in Chinese with English abstract).
  9. Hír, J., Venczel, M., Codrea, V., Rössner, G.E., Angelone, C., van den Hoek Ostende, L.W., Rosina, V.V., Kirscher, U., Prieto, J., 2017. Badenian and Sarmatian s.str. from the Carpathian area: Taxonomical notes concerning the Hungarian and Romanian small vertebrates and report on the ruminants from the Felsőtárkány Basin. Comptes Rendus Palevol, v.6(3), p. 312-332. http://dx.doi.org/10.1016/j.crpv.2016.11.006
  10. Sant, K., Kirscher, U., Reichenbacher, B., Pippèrr, M., Jung, D., Doppler, G., Krijgsman, W., 2017. Late Burdigalian sea retreat from the North Alpine Foreland Basin: new magnetostratigraphic age constraints. Global and Planetary Change, v. 152, p. 38-50. http://dx.doi.org/10.1016/j.gloplacha.2017.02.002
  11. Scholze, F., Wang, X., Kirscher, U., Kraft, J., Schneider, J.W., Götz, A.E., Joachimski, M.M., Bachtadse, V., 2017.  A multistratigraphic approach to pinpoint the Permian-Triassic boundary in continental deposits: The Zechstein–Lower Buntsandstein transition in Germany. Global and Planetary Change, v. 152, p. 129-151. https://dx.doi.org/10.1016/j.gloplacha.2017.03.004
  12. Kirscher, U., Oms, O., Bruch, A.A., Shatilova, I., Chochishvili, G., Bachtadse, V., 2017. The Calabrian in the Western Transcaucasian basin (Georgia): Paleomagnetic constraints from the Gurian regional stage. Quaternary Science Reviews, v. 160, p. 96-107. http://dx.doi.org/10.1016/j.quascirev.2017.01.017
  13. Kirscher, U., Bachtadse, V., Mikolaichuk, A.V., Kröner, A., Alexeiev, D.V.,  2017. Palaeozoic evolution of the North Tianshan based on palaeomagnetic data – transition from Gondwana towards Pangaea. International Geology Review, v. 50(16). http://dx.doi.org/10.1080/00206814.2017.1308840
  14. Tao, N., Li, Z.X., Danišík, M., Evans, N. J., Batt, G. E., Li, W.-X., Pang, C.-J., Jourdan, F., Xu, Y.-G., and Liu, L.-P., 2017. Thermochronological record of Middle–Late Jurassic magmatic reheating to Eocene rift-related rapid cooling in the SE South China Block. Gondwana Research, v. 46, p. 191-203. https://doi.org/10.1016/j.gr.2017.03.003
  15. Liu, L.-P., Li, Z.-X., Danišík, M., Li, S., Evans, N., Jourdan, F., and Tao, N., 2017. Thermochronology of the Sulu ultrahigh-pressure metamorphic terrane: Implications for continental collision and lithospheric thinning. Tectonophysics 712–713, 10-29. https://doi.org/10.1016/j.tecto.2017.05.003
  16. Spencer, C.J., Gunderson, K.L., Hoiland, C.W., Schleiffarth, W.K., 2017. Earth-Science Outreach Using an Integrated Social Media Platform. GSA Today, v. 27(8), p. 28-29. https://dx.doi.org/10.1130/GSATG333GW
  17. Meredith, A.S., Collins, A.S., Williams, S.E., Pisarevsky, S.A., Foden, J.D., Archibald, D.B., Blades, M.L., Alessio, B.L., Armistead, S., Plavsa, D., Clark. C., Müller, D., 2017. A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, v. 50, p. 84-134. https://dx.doi.org/10.1016/j.gr.2017.04.001
  18. Hopkinson, T.N., Harris, N.B.W., Warren, C.J., Spencer, C.J., Roberts, N.M.W., Horstwood, M.S.A., Parrish, R.R., EIMF, 2017. The identification and significance of pure sediment-derived granites. Earth and Planetary Science Letters, v. 467, p. 57-63. https://dx.doi.org/10.1016/j.epsl.2017.03.018
  19. Böhme, M., Spassov, N., Ebner, M., Geraads, D., Hristova, L., Kirscher, U., Kötter, S., Linnemann, U., Prieto, J., Roussiakis, S., Theodorou, G., Uhlig, G., Winklhofer, M., 2107. Messinian age and savannah environment of the possible hominin Graecopithecus from Europe. PLOS ONE, v. 12(5), e0177347. https://dx.doi.org/10.1371/journal.pone.0177347
  20. Martin, E.L., Collins, W.J., Kirkland, C.L., 2017. An Australian source for Pacific-Gondwanan zircons: Implications for the assembly of northeastern Gondwana. Geology, v. 45(8), p. 699-702. http://dx.doi.org/10.1130/G39152.1
  21. Bállico, M.B., Scherer, C.M.S., Mountney, N.P., Souza, E.G., Chemale, F., Pisarevsky, S.A., Reis, A.D., 2017. Wind-pattern circulation as a palaeogeographic indicator: Case study of the 1.5–1.6 Ga Mangabeira Formation, São Francisco Craton, Northeast Brazil. Precambrian Research, v. 298, p. 1-15. https://dx.doi.org/10.1016/j.precamres.2017.05.005
  22. Spencer, C.J., Yakymchuk, C., Ghaznavi, M., 2017. Visualising data distributions with kernel density estimation and reduced chi-squared statistic. Geoscience Frontiers, v. 8(6), p. 1247-1252. https://doi.org/10.1016/j.gsf.2017.05.002
  23. Mayr, C., Brandlmeier, B., Diersche, V., Stojakowits, P., Kirscher, U., Matzke-Karasz, R., Bachtadse, V., Eigler, M., Haas, U., Lempe, B., Reimer, P.J., Spötl, C., 2017. Nesseltalgraben, a new reference section of the last glacial period in southern Germany. Journal of Paleolimnology, v. 58(2), p. 213-229. https://doi.org/10.1007/s10933-017-9972-0
  24. Murphy, J.B., Shellnutt, J.G., Collins, W.J., 2017. Late Neoproterozoic to Carboniferous genesis of A-type magmas in Avalonia of northern Nova Scotia: repeated partial melting of anhydrous lower crust in contrasting tectonic environments. International Journal of Earth Sciences, In Press. https://dx.doi.org/10.1007/s00531-017-1512-7
  25. Pippèrr, M., Reichenbacher, B., Kirscher, U., Sant, K., Hanebeck, H., 2017. The middle Burdigalian in the North Alpine Foreland Basin (Bavaria, SE Germany) – a lithostratigraphic, biostratigraphic and magnetostratigraphic re-evaluation. Newsletters on Stratigraphy. https://doi.org/10.1127/nos/2017/0403
  26. Spencer, C.J., Roberts, N.M.W., Santosh, M., 2017. Growth, destruction, and preservation of Earth’s continental crust. Earth-Science Reviews, v. 172, p. 87-106. https://dx.doi.org/10.1016/j.earscirev.2017.07.013
  27. Belica, M.E., Tohver, E., Poyatos-Moré, M., Flint, S., Parra-Avila, L.A., Lanci, L., Denyszyn, S., Pisarevsky, S.A., 2017. Refining the chronostratigraphy of the Karoo Basin, South Africa: magnetostratigraphic constraints support an Early Permian age for the Ecca Group. Geophysical Journal International, ggx344. https://dx.doi.org/10.1093/gji/ggx344
  28. Maravelis, A.G., Catuneanu, O., Nordsvan, A., Landenberger, B., Zelilidis, A., 2017. Interplay of tectonism and eustasy during the Early Permian icehouse: Southern Sydney Basin, southeast Australia. Geological Journal, 1-32.  https://dx.doi.org/10.1002/gj.2962
  29. Kirkland, C.L., Abello, F., Danišík, M., Gardiner, N.J., Spencer, C., 2017. Mapping temporal and spatial patterns of zircon U-Pb disturbance: A Yilgarn Craton case study. Gondwana Research, v. 52, p. 39-47. https://doi.org/10.1016/j.gr.2017.08.004
  30. Venkataramani, D., Musgrave, R.J., Boutelier, D.A., Hack, A.C., Collins, W.J., 2017. Revised potential field model of the Gilmore Fault Zone. Journal of the Australian Society of Exploration Geophysics. https://doi.org/10.1071/EG16148
  31. Ito H., Spencer C.J., Danišík M., Hoiland C.W., 2017. Magmatic tempo of Earth’s youngest exposed plutons as revealed by detrital zircon U-Pb geochronology. Scientific Reports v. 7, 12457. https://doi.org/10.1038/s41598-017-12790-w
  32. Yao, W., Li, Z.X., 2017. Tectonostratigraphy and provenance analysis to define the edge and evolution of the eastern Wuyi-Yunkai orogen, South China. Geological Magazine, 1-16. https://doi.org/10.1017/S0016756817000784
  33. Spencer, C.J., Cavosie, A.J., Raub, T.D., Rollinson, H., Jeon, H., Searle, M.P., Miller, J.A., McDonald, B.J., Evans, N.J., Edinburgh Ion Microprobe Facility (EIMF), 2017. Evidence for melting mud in Earth’s mantle from extreme oxygen isotope signatures in zircon. Geology. http://doi.org/10.1130/G39402.1
  34. Maravelis, A.G., Chamilaki, E., Pasadakis, N., Zelilidis, A., Collins, W.J., 2017. Hydrocarbon generation potential of a Lower Permian sedimentary succession (Mount Agony Formation): Southern Sydney Basin, New South Wales, Southeast Australia. International Journal of Coal Geology, v. 183, p. 52-64. https://doi.org/10.1016/j.coal.2017.09.017
  35. Hoffman, P.F., Abbot, D.S., Ashkenazy, Y., Benn, D.I., Brocks, J.J., Cohen, P.A., Cox, G.M., Creveling, J.R., Donnadieu, Y., Erwin, D.H., Fairchild, I.J., Ferreira, D., Goodman, J.C., Halverson, G.P., Jansen, M.F., Le Hir, G., Love, G.D., Macdonald, F.A., Maloof, A.C., Partin, C.A., Ramstein, G., Rose, B.E.J., Rose, C.V., Sadler, P.M., Tziperman, E., Voigt, A., Warren, S.G., 2017. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, v. 3(11), e1600983. https://doi.org/10.1126/sciadv.1600983
  36. Zhu, K.-Y., Li, Z.-X., Xia, Q.-K., Xu, X.-S., Wilde, S. A. and Chen, H.-L., 2017. Revisiting Mesozoic felsic intrusions in eastern South China: spatial and temporal variations and tectonic significance. Lithos v. 294-295, p. 147-163, 2007. https://doi.org/10.1016/j.lithos.2017.10.008
  37. Gladkochub D.P., Donskaya T.V., Zhang S., Pisarevsky S.A., Stanevich A.M., Mazukabzov A.M., Motova Z.L., 2017. Early stage of the Central Asian Orogenic Belt building: evidences from the southern Siberian craton. Geodynamics & Tectonophysics, v. 8(3), p. 461-463. https://doi.org/10.5800/GT-2017-8-3-0262
  38. Playton, T.E., Hocking, R.M., Tohver, E., Hillburn, K., Haines, P.W., Trinajstic, K., Roelofs, B., Katz, D.A., Kirschvink, J.L., Grice, K., Montgomery, P., Hansma, J., Yan, M., Pisarevsky, S., Tulipani, S., Ratcliffe, K., Caulfield-Kerney, S., Wray, D., 2017. Integrated stratigraphic correlation of Upper Devonian platform-to-basin carbonate sequences, Lennard Shelf, Canning Basin, Western Australia: advances in carbonate margin-to-slope sequence stratigraphy and stacking patterns. In: Playton, T.E., Kerans, C., Weissenberger, J.A.W. (eds.) New Advances in Devonian Carbonates: Outcrop Analogs, Reservoirs, and Chronostratigraphy. SEPM Special Publication 107 . SEPM (Society for Sedimentary Geology), p. 248-301. ISBN 978-56576-344-9. https://doi.org/10.2110/sepmsp.107.10
  39. Gladkochub, D.P., Donskaya, T.V., Sklyarov, E.V., Kotov, A.B., Vladykin, N.V., Pisarevsky, S.A., Larin, A.M., Salnikova, E.B., Saveleva, V.B., Sharygin, V.V., Starikova, A.E., Tolmacheva, E.V., Velikoslavinsky, S.D., Mazukabzov, A.M., Bazarova, E.P., Kovach, V.P., Zagornaya, N.Yu., Alymova, N.V., Khromova, E.A., 2017. The unique Katugin rare-metal deposit (southern Siberia): Constraints on age and genesis. Ore Geology Reviews, v. 91, p. 246-263.  https://doi.org/10.1016/j.oregeorev.2017.10.002
  40. Stark, J.C., Wang, X.C., Denyszyn, S.W., Li, Z.X., Rasmussen, B., Zi, J.W., Sheppard, S., Liu, Y., 2017. Newly identified 1.89 Ga mafic dyke swarm in the Archean Yilgarn Craton, Western Australia suggests a connection with India. Precambrian Research, In Press.  https://doi.org/10.1016/j.precamres.2017.12.036
  41. Zhang, N., Dygert, N.J., Liang, Y., Parmentier, E.M., 2017. The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle, Geophysical Research Letters, 44 (13), 6543–6552.  https://doi.org/10.1002/2017GL073702

2016

  1. Niu, J., Li, Z.X., Zhu, W.: Palaeomagnetism and geochronology of mid-Neoproterozoic Yanbian dykes, South China: implications for a c. 820–800 Ma true polar wander event and the reconstruction of Rodinia. In: Li, Z. X., Evans, D. A. D. & Murphy, J. B. (eds.), Supercontinent Cycles Through Earth History. Geological Society, London, Special Publications, 424, 191–211, 2016. http://dx.doi.org/10.1144/SP424.11
  2. Evans, D.A.D., Li., Z.-X., Murphy, J.B.: Four-dimensional context of Earth’s supercontinents. In: Li, Z. X., Evans, D. A. D. & Murphy, J. B. (eds.), Supercontinent Cycles Through Earth History. Geological Society, London, Special Publications, 424, 1–14, 2016. http://dx.doi.org/10.1144/SP424.12
  3. Cox, G.M., Halverson, G.P., Stevenson, R.K., Vokaty, M., Poirier, A., Kunzmann, M., Li, Z.-X., Denyszyn, S.W., Strauss, J.V., Macdonald, F.A., 2016, Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, v. 446, p. 89-99. http://dx.doi.org/10.1016/j.epsl.2016.04.016
  4. Cox, G.M., Jarrett, A., Edwards, D., Crockford, P.W., Halverson, G.P., Collins, A.S., Poirier, A., Li, Z.-X., 2016, Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chemical Geology, v. 440, p. 101-114. http://dx.doi.org/10.1016/j.chemgeo.2016.06.025
  5. Pang, C.J., Li, Z.X., Xu, Y.G., Wen, S.N., Krapež, B., 2016. Climatic and tectonic controls on Late Triassic to Middle Jurassic sedimentation in northeastern Guangdong Province, South China. Tectonophysics, v. 677–678, p. 68–87. http://dx.doi.org/10.1016/j.tecto.2016.03.041
  6. Cen, T., Li, W., Wang, X., Pang, C., Li, Z.-X., Xing, G., Zhao, X., Tao, J., 2016, Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China. Lithos, v. 256-257, p. 311-330. http://dx.doi.org/10.1016/j.lithos.2016.03.022
  7. Wang, Q., Hawkesworth, C.J., Wyman, D., Chung, S.L., Wu, F.Y., Li, X.H., Li, Z.X., Gou, G.N., Zhang, X.Z., Tang, G.J., Dan, W., Ma, L., Dong, Y.H., 2016. Pliocene–Quaternary crustal melting in central and northern Tibet with new insights into crustal flow. Nature Communications, v. 7, 11888, http://dx.doi.org/10.1038/ncomms11888
  8. Yao, W.H., Li, Z.X., 2016. Tectonostratigraphic history of the Ediacaran–Silurian Nanhua foreland basin in South China. Tectonophysics 674, 31-51. http://dx.doi.org/10.1016/j.tecto.2016.02.012
  9. Zhu, K.Y., Li, Z.X., Xu, X.S., Wilde, S.A., Chen, H.L., 2016. Early Mesozoic ferroan (A-type) and magnesian granitoids in eastern South China: Tracing the influence of flat-slab subduction at the western Pacific margin. Lithos 240, 371–381. http://dx.doi.org/10.1016/j.lithos.2015.11.025
  10. Zhu, W.G., Zhong, H., Li, Z.-X., Bai, Z.J., Yang, Y.J., 2016, SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca. 1.0 Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance. Precambrian Research, 273, 67-89. http://dx.doi.org/10.1016/j.precamres.2015.12.011
  11. Peng, P., Ernst, R., Hou, G., Söderlund, U., Zhang, S., Hamilton, M., Xu, Y., Denyszyn, S., Mege, D., Pisarevsky, S., Srivastava, R., Kusky, T., 2016. Dyke swarms: keys to paleogeographic reconstructions. Science Bulletin 61(21), 1669-1671. http://dx.doi.org/10.1007/s11434-016-1184-x
  12. Metelkin, D.V., Vernikovsky, V.A., Tolmacheva, Matushkin, N.Yu., Zhdanova, A.I., Yu., Pisarevsky, S.A., 2016. First paleomagnetic data for the New Siberian Islands: Implications for Arctic paleogeography. Gondwana Research 37, 308-323. http://dx.doi.org/10.1016/j.gr.2015.08.008
  13. Pisarevsky, S.A., Rosenbaum, G., Shaanan, U., Hoy, D., Speranza, F., Mochales, T., 2016. Paleomagnetic and geochronological study of Carboniferous forearc basin rocks in the Southern New England Orogen (Eastern Australia). Tectonophysics 681, 263-277. http://dx.doi.org/10.1016/j.tecto.2016.01.029
  14. Cawood, P.A., Strachan, R.A., Pisarevsky, S.A., Gladkochub, D.P., Murphy, J.B., 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449, 118-126. http://dx.doi.org/10.1016/j.epsl.2016.05.049
  15. Gladkochud, D.P., Donskaya, T.V., Mazukabzov, A.M., Pisarevsky, S.A., Ernst, R.E., Stenevich, A.M., 2016, The Mesoproterozoic mantle plume beneath the northern part of the Siberian craton. Russian Geology and Geophysics, 57, 672-686. http://dx.doi.org/10.1016/j.rgg.2016.04.004
  16. Cederberg, J., Söderlund, U., Oliveira, E.P., Ernst, R.E., Pisarevsky, S.A., 2016. U-Pb baddeleyite dating of the Proterozoic Pará de Minas dyke swarm in the São Francisco craton (Brazil) – implications for tectonic correlation with the Siberian, Congo and North China cratons. GFF 138, 219-240. http://dx.doi.org/10.1080/11035897.2015.1093543
  17. Spencer, C.J., Harris, R.A., Major, J.R., 2016, Provenance of Permian-Triassic Gondwana sequence unit accreted to the Banda Arc: constraints from zircon U-Pb and Hf isotopes. In press in Gondwana Research v. 38, p. 28-39. http://dx.doi.org/10.1016/j.gr.2015.10.012
  18. Kirkland, C.L., Spaggiari, C., Johnson, T., Smithies, H., Danisik, M., Evans N., Wingate, M., Clark, C., Spencer C., Mikucki, E., McDonald, B., 2016. Grain size matters: Implications for mobilization of radiogenic-Pb in titanite: an example from the Albany-Fraser Orogen. Precambrian Research v. 278, p. 283-302, http://dx.doi.org/10.1016/j.precamres.2016.03.002
  19. Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2016, Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology, Geoscience Frontiers, v. 7, p. 581-589, http://dx.doi.org/10.1016/j.gsf.2015.11.006
  20. Thomas, R.J., Spencer, C.J., Bushi, A.M., Baglow, N., Boniface, N., de Kock, G., Horstwood, M.S.A., Hollick, L., Jacobs, J., Kajara, S., Kamihanda, G., Key, R.M., Maganga, Z., Mbawala., F., McCourt, W., Momburi, P., Moses, F., Mruma, A., Myambilwa, Y., Roberts, N.M.W., Saidi, H., Nyanda, P., Nyoka, K., Millar, I., 2016, Geochronology of the central Tanzania Craton and its southern and eastern orogenic margins, Precambrian Research, v. 277, p. 47-67.  http://dx.doi.org/10.1016/j.precamres.2016.02.008
  21. Gardiner, N.J., Searle, M.P., Morley, C.K., Whitehouse, M.P., Spencer, C.J., Robb, L.J., 2016, The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: new insights from zircon U–Pb and Hf isotope data. Gondwana Research, v. 39, p. 401-422. http://dx.doi.org/10.1016/j.gr.2015.03.001
  22. Thomas, R.J., Macey, P.H., Spencer, C.J., Dhansay, T., Diener, J.F.A., Lambert, C.W., Frei, D., Nguno, A., 2016, The Sperrgebiet Domain, Aurus Mountains, SW Namibia: A∼ 2020–850Ma window within the Pan-African Gariep Orogen. Precambrian Research, v. 286, p. 35-58. http://dx.doi.org/10.1016/j.precamres.2016.09.023
  23. Hír, J., Venczel, M., Codrea, V., Angelone, C., van den Hoek Ostende, L.W., Kirscher, U., Prieto, J., 2016. Badenian and Sarmatian s.str. from the Carpathian area: Overview and ongoing research on Hungarian and Romanian small vertebrate evolution. Comptes Rendus Palevol, v. 15(7), p. 863-875. http://dx.doi.org/10.1016/j.crpv.2016.08.001
  24. Kirscher, U., Prieto, J., Bachtadse, V., Aziz, H. Abdul, Doppler, G., Hagmaier, M., Böhme, M., 2016. A biochronologic tie-point for the base of the Tortonian stage in European terrestrial settings: Magnetostratigraphy of the topmost Upper Freshwater Molasse sediments of the North Alpine Foreland Basin in Bavaria (Germany). Newsletters on Stratigraphy, v. 49(3), p. 445-467. https://doi.org/10.1127/nos/2016/0288