Skip to main content

Publications

Please see the lists below for journal articles contributed to by our group members.

These can also be found on Google Scholar.

2023

  1. Liu, S.-L., Ma, L., Zou, X., Fang, L., Qin, B., Melnik, A.E., Kirscher, U., Yang, K.-F., Fan, H.-R., Mitchell, R.N., 2023. Trends and rhythms in carbonatites and kimberlites reflect thermo-tectonic evolution of Earth. Geology, 51(1), 101–105. https://doi.org/10.1130/G50775.1
  2. Ma, L., Wang, Q., Kerr, A.C., Li, Z.-X., Dan, W., Yang, Y.-N., Zhou, J.-S., Wang, J., Li, C., 2023. Eocene magmatism in the Himalaya: Response to lithospheric flexure during early Indian collision?. Geology, 51 (1), 96–100. https://doi.org/10.1130/G50438.1
  3. Wang, T., Tong, Y., Huang, H., Zhang, H., Guo, L., Li, Z., Wang, X., Eglington, B., Li, S., Zhang, J., Donskaya, T.V., Petrov, O., Zhang, L., Song, P., Zhang, X., Wang, C., 2023. Granitic record of the assembly of the Asian continent. Earth-Science Reviews, 237, 104298. https://doi.org/10.1016/j.earscirev.2022.104298
  4. Li, H., Yue, Z., Lin, Y., Di, K., Zhang, N., Liu, J., 2023. Olivine origination in lunar Das crater through three-dimensional numerical simultation. Icarus, 391, 115333. https://doi.org/10.1016/j.icarus.2022.115333
  5. Huang, C., Li, Z.-X., 2023. Why supercontinents became shorter lived as the Earh evolved. Science Bulletin, 68(4), 436-440. https://doi.org/10.1016/j.scib.2023.01.035
  6. Li, Z.-X., Liu, Y., Ernst, R., 2023. A dynamic 2000—540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth-Science Reviews, 238, 104336. https://doi.org/10.1016/j.earscirev.2023.104336
  7. Evans, K., Reddy, S.M., Merle, R., Fougerouse, D., Rickard, W.D.A., Saxey, D.W., Park, J.-W., Doucet, L., Jourdan, F., 2023. The origin of platinum group minerals in oceanic crust. Geology. https://doi.org/10.1130/G50927.1
  8. Doucet, L.S., Li, Z.-X., Brennan, D., Offler, R., Gamaleldien, H., Ware, B., Tessalina, S.G., Moine, B.N., 2023. Precambrian history of the Pacific Mantle Domain: New constraints from Woodsreef and Port Macquarie serpentinized spinel harzburgites of the New England Orogen, Australia. Journal of Petrology, egad028. https://doi.org/10.1093/petrology/egad028
  9. Kirscher, U., Dallanave, E., Bachtadse, V., 2023. Paleoposition and Paleogeography of Egypt During the Phanerozoic Era. In: , et al. The Phanerozoic Geology and Natural Resources of Egypt. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-95637-0_4
  10. Condie, K.C., Pisarevsky, S.A., Puetz, S.J., Roberts, N.M.W., Spencer, C.J., 2023. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events. Earth and Planetary Science Letters, 610, 118125. https://doi.org/10.1016/j.epsl.2023.118125
  11. Laurent, O., Couzinié, S., Doucet, L.S., 2023. Timescales of ultra-high temperature metamorphism and crustal differentiation: Zircon petrochronology from granulite xenoliths of the Variscan French Massif Central. Earth and Planetary Science Letters, 611, 118133. https://doi.org/10.1016/j.epsl.2023.118133
  12. Hamdy, M., El-Shafei, S., Gamaleldien, H., Abu-Alam, T., 2023. Silica cycling in Neoproterozoic oceanic lithosphere: A case study from Wadi Igla carbonate-serpentinite (southern Eastern Desert of Egypt). Precambrian Research, 390, 107033. https://doi.org/10.1016/j.precamres.2023.107033

2022

  1. Kirscher, U., Mitchell, R. N., Liu, Y., Pisarevsky, S. A., Giddings, J., Li, Z.-X., 2022. Paleomagnetic evidence for a Paleoproterozoic rotational assembly of the North Australian craton in the leadup to supercontinent formation. Geophysical Research Letters, 49, e2022GL099842. https://doi.org/10.1029/2022GL099842
  2. Pisarevsky, S.A., Li, Z.X., Tetley, M.G., Liu, Y., Beardmore, J.P., 2022. An updated internet-based Global Paleomagnetic Database. Earth-Science Reviews, 104258. https://doi.org/10.1016/j.earscirev.2022.104258
  3. Gamaleldien, H., Li, Z.X., Anbar, M.A., Murphy, J.B., Doucet, L.S., 2022. Geochronological and isotopic constraints on Neoproterozoic crustal growth in the Egyptian Nubian Shield: Review and synthesis. Earth-Science Reviews, 104244. https://doi.org/10.1016/j.earscirev.2022.104244
  4. Doucet, L.S., Tetley, M.G., Li, Z.-X., Liu, Y., Gamaleldien, H., 2022. Geochemical fingerprinting of continental and oceanic basalts: A machine learning approach. Earth-Science Reviews, 233, 104192. https://doi.org/10.1016/j.earscirev.2022.104192
  5. Huang, C., Li, Z.X., Zhang, N., 2022. Will Earth’s next supercontinent assemble through the closure of the Pacific Ocean? National Science Review, nwac205. https://doi.org/10.1093/nsr/nwac205
  6. Yao, W., Zhu, X., Wang, J., Zhou, X., Spencer, C.J., Wang, Z.-J., Li, Z.-X., 2022. Position of South China and Indochina along northern Gondwana margin during the Ediacaran–Silurian period. Precambrian Research, 379, 106809. https://doi.org/10.1016/j.precamres.2022.106809
  7. Nordsvan, A.R., Volante, S., Collins, W.J., Pourteau, A., Li, J., Withnall, I.W., Beams, S., Li, Z.-X., 2022. Post-collisional magmatism in NE Australia during Mesoproterozoic supercontinent Nuna: Insights from new zircon U-Pb and Lu-Hf data. Lithos, 428–429, 106827. https://doi.org/10.1016/j.lithos.2022.106827
  8. Gamaleldien, H., Li, Z.-X., Abu Anbar, M., Murphy, J.B., Evans, N.J., Xia, X.-P., 2022. Formation of juvenile continental crust in northern Nubian Shield: New evidence from granitic zircon U-Pb-Hf-O isotopes. Precambrian Research, 379, 106791. https://doi.org/10.1016/j.precamres.2022.106791
  9. Lagain, A., Bouley, S., Zanda, B., Miljković, K., Rajšić, A., Baratoux, D., Payré, V., Doucet, L.S., Timms, N.E., Hewins, R., Benedix, G.K., Malarewic, V., Servis, K., Bland, P.A., 2022. Early crustal processes revealed by the ejection site of the oldest martian meteorite. Nature Communications, 13, 3782. https://doi.org/10.1038/s41467-022-31444-8
  10. Liou, P., Wang, Z., Mitchell, R.N., Doucet, L.S., Li, M., Guo, J., Zhai, M., 2022. Fe isotopic evidence that “high pressure” TTGs formed at low pressure. Earth and Planetary Science Letters, 592, 117645. https://doi.org/10.1016/j.epsl.2022.117645
  11. Wu, L., Huang, W., Liang, H., Murphy, J.B., Kirscher, U., Mitchell, R.N., Hawkins, L.M.A., Halverson, G.P., Gu, Y.J., Zhang, J., Liu, X., 2022. Paleomagnetism of the Guanyang Devonian sedimentary successions in Guangxi province, South China. Gondwana Research, 105, 143-159. https://doi.org/10.1016/j.gr.2021.09.004
  12. Mitchell, R.N., Spencer, C.J., Kirscher, U., Wilde, S.A., 2022. Plate tectonic-like cycles since the Hadean: Initiated or inherited? Geology, In press. https://doi.org/10.1130/G49939.1
  13. Liu, Y., Mitchell, R.N., Brown, M., Johnson, T.E., Pisarevsky, S.A., 2022. Linking metamorphism and plate boundaries over the past 2 billion years. Geology. https://doi.org/10.1130/G49637.1
  14. Liu, X., Dang, Z., Zhang, N., 2022. Study on the mechanism of mantle plume production: taking Ferrar as an example. Acta Scientiarum Naturalium Universitatis Pekinensis, 58(2), 234-240. DOI:10.13209/j.0479-8023.2022.018
  15. Wu, L., Murphy, J.B., Collins, W.J., Waldron, J.W.F., Li, Z.-X., Pisarevsky, S.A., Halverson, G.P., 2022. A trans-Iapetus transform fault control for the evolution of the Rheic Ocean: Implications for an early Paleozoic transition of accretionary tectonics. GSA Bulletin. https://doi.org/10.1130/B36158.1
  16. Volante, S., Collins, W.J., Barrote, V., Nordsvan, A.R., Pourteau, A., Li, Z.-X., Li, J., Beams, S., 2022. Spatio–temporal evolution of Mesoproterozoic magmatism in NE Australia: A hybrid tectonic model for final Nuna assembly. Precambrian Research, 372, 106602. https://doi.org/10.1016/j.precamres.2022.106602
  17. Lagain, A., Kreslavsky, M., Baratoux, D., Liu, Y., Devillepoix, H., Bland, P., Benedix, G.K., Doucet, L.S., Servis, K., 2022. Has the impact flux of small and large asteroids varied through time on Mars, the Earth and the Moon? Earth and Planetary Science Letters, 579, 117362. https://doi.org/10.1016/j.epsl.2021.117362
  18. Gladkochub, D.P., Donskaya, T.V., Pisarevsky, S.A., Ernst, R.E., Söderlund, U., Kotov, A.B., Kovach, V.P., Okrugin, A.V., 2022. 1.79–1.75 Ga mafic magmatism of the Siberian craton and late Paleoproterozoic paleogeography. Precambrian Research, 370, 106557. https://doi.org/10.1016/j.precamres.2022.106557
  19. Doucet, L.S., Gamaleldien, H., Li, Z.-X., 2022. Pitfalls in using the geochronological information from the EarthChem Portal for Precambrian time-series analysis. Precambrian Research, 369, 106514. https://doi.org/10.1016/j.precamres.2021.106514
  20. Zhang, Y., Zhang, N., Tian, M., 2022. Internal dynamics of magma ocean and its linkage to atmospheres. Acta Geochimica, In press. https://doi.org/10.1007/s11631-021-00514-x
  21. Brennan, D.T., Link, P.K., Li, Z.-X., Martin, L., Johnson, T., Evans, N.J., Li, J., 2022. Closing the “North American Magmatic” Gap: Crustal evolution of the Clearwater Block from multi-isotope and trace element zircon data. Precambrian Research, 369, 106533. https://doi.org/10.1016/j.precamres.2021.106533
  22. Zhang, N., Ding, M., Zhu, MH., Li, H., Li, H., Yue, Z., 2022. Lunar compositional asymmetry explained by mantle overturn following the South Pole–Aitken impact. Nature Geoscience, 15, 37–41. https://doi.org/10.1038/s41561-021-00872-4

2021

  1. Ernst, R.E., Bond, D.P.G., Zhang, S.-H., Buchan, K.L., Grasby, S.E., Youbi, N., El Bilali, H., Bekker, A., Doucet, L.S., 2021. Large Igneous Province Record Through Time and Implications for Secular Environmental Changes and Geological Time-Scale Boundaries. In Large Igneous Provinces (eds R.E. Ernst, A.J. Dickson and A. Bekker). https://doi.org/10.1002/9781119507444.ch1
  2. Youbi, N., Ernst, R.E., Mitchell, R.N., Boumehdi, M.A., El Moume, W., Lahna, A.A., Bensalah, M.K., Söderlund, U., Doblas, M., Tassinari, C.C.G., 2021. Preliminary Appraisal of a Correlation Between Glaciations and Large Igneous Provinces Over the Past 720 Million Years. In Large Igneous Provinces (eds R.E. Ernst, A.J. Dickson and A. Bekker). https://doi.org/10.1002/9781119507444.ch8
  3. Li, H.-C., Zhang, N., Yue, Z.-Y., Zhang, Y.-Z., 2021. Lunar cratering asymmetries with high lunar orbital obliquity and inclination of the Moon. Research in Astronomy and Astrophysics, 21(6), 140. https://doi.org/10.1088/1674-4527/21/6/140
  4. Gladkochub, D.P., Donskaya, T.V., Pisarevsky, S.A., Salnikova, E.B., Mazukabzov, A.M., Kotov, A.B., Motova, Z.L., Stepanova, A.V., Kovach, V.P., 2021. Evidence of the latest Paleoproterozoic (~1615 Ma) mafic magmatism the southern Siberia: Extensional environments in Nuna supercontinent. Precambrian Research, 354, 106049. https://doi.org/10.1016/j.precamres.2020.106049
  5. Olierook, H.K.H., Affleck, R.G., Evans, N.J., Jourdan, F., Kirkland, C.L., Volante, S., Nordsvan, A.R., McInnes, B.I.A., McDonald, B., Mayers, C., Frew, R.A., Rankenburg, K., d’Offay, N., Nind, M., Larking, A., 2021. Mineralization proximal to the final Nuna suture in northeastern Australia. Gondwana Research, 92, 54-71. https://doi.org/10.1016/j.gr.2020.12.017
  6. Liebmann, J., Spencer, C.J., Kirkland, C.L., Bucholz, C.E., He, X.-F., Santosh, M., Xia, X.P., Martin, L., Evans, N.J., 2021. Emergence of continents above sea-level influences sediment melt composition. Terra Nova, 33, 465– 474. https://doi.org/10.1111/ter.12531
  7. Gamaleldien, H., 2021. Exploring mantle evolution with atom probe tomography. Nature Reviews Earth and Environment, 43017. https://doi.org/10.1038/s43017-021-00172-w
  8. Cawood, P.A., Martin, E.L., Murphy, J.B., Pisarevsky, S.A., 2021. Gondwana’s interlinked peripheral orogens. Earth and Planetary Science Letters, 568, 117057. https://doi.org/10.1016/j.epsl.2021.117057
  9. Condie, K.C., Pisarevsky, S.A., Puetz, S.J., 2021. LIPs, orogens and supercontinents: The ongoing saga. Gondwana Research, 96, 105-121. https://doi.org/10.1016/j.gr.2021.05.002
  10. Mitchell, R.N., Kirscher, U., Kunzmann, M., Liu, Y., Cox, G.M., 2021. Gulf of Nuna: Astrochronologic correlation of a Mesoproterozoic oceanic euxinic event. Geology, 49(1), 25-29.  https://doi.org/10.1130/G47587.1
  11. Kirscher, U., Mitchell, R.N., Liu, Y., Nordsvan, A.R., Cox, G.M., Pisarevsky, S.A., Wang, C., Wu, L., Murphy, J.B., Li, Z.-X., 2021. Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent. Geology, 49(2), 174-179. https://doi.org/10.1130/G47823.1
  12. Qi, L., Zhang, N., Xu, B., Wang, Z., 2021. Geodynamic modeling on the formation mechanism of Linxi Basin: New constraints on the closure time of the Paleo-Asian Ocean. Tectonophysics, 810, 228866. https://doi.org/10.1016/j.tecto.2021.228866
  13. Wu, L., J. Murphy, J.B., Quesada, C., Li, Z.-X., Waldron, J.W.F., Williams, S., Pisarevsky, S., Collins, W.J., 2021. The amalgamation of Pangea: Paleomagnetic and geological observations revisited. GSA Bulletin, 133(3-4), 625-646.  doi: https://doi.org/10.1130/B35633.1
  14. Gan B., Diwu C., Wu L., Wang T. (2021). Geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes of the late Paleozoic Dongshuigou composite pluton in the Dunhuang Block, southernmost Central Asian Orogen: Petrogenesis and implications for crustal growth. Lithos, 384-385, 105970. https://doi.org/10.1016/j.lithos.2021.105970
  15. Qi, Y., Hawkesworth, C.J., Wang, Q., Wyman, D.A., Li, Z.X., Dong, H., Ma, T., Chen, F., Hu, W.L., Zhang, X.Z., 2021. Syn-collisional magmatic record of Indian steep subduction by 50 Ma. GSA Bulletin, 133(5-6), 949–962. https://doi.org/10.1130/B35498.1
  16. Gamal El Dien, H., Li, Z.X., Anbar, M.A., Doucet, L.S., Murphy, J.B., Evans, N.J., Xia, X.P., Li, J., 2021. Two-stage crustal growth in the Arabian-Nubian shield: Initial arc accretion followed by plume-induced crustal reworking. Precambrian Research, 359, 106211. https://doi.org/10.1016/j.precamres.2021.106211
  17. Brennan, D.T., Li, Z., Rankenburg, K., Evans, N., Link, P.K., Nordsvan, A.R., Kirkland, C.L., Mahoney, J.B., Johnson, T., Mcdonald, B.J., 2021. Recalibrating Rodinian rifting in the northwestern United States: Geology, 49(6): 617–622. https://doi.org/10.1130/G48435.1
  18. Brennan, D.T., Mitchell, R.N., Spencer, C.J., Murphy, J.B., Li, Z., 2021. A tectonic model for the Transcontinental Arch: Progressive migration of a Laurentian drainage divide during the Neoproterozoic‐Cambrian Sauk Transgression. Terra Nova, 33(4), 430-440. https://doi.org/10.1111/ter.12528
  19. Mitchell, R.N., Zhang, N., Salminen, J., Liu, Y., Spencer, C.J., Steinberger, B., Murphy, J.B., Li, Z.X., 2021. The supercontinent cycle. Nature Reviews Earth & Environmenthttps://doi.org/10.1038/s43017-021-00160-0
  20. Liu Y., Mitchell, R.N., Li, Z.X., Kirscher, U., Pisarevsky, S.A., Wang, C., 2021. Archean geodynamics: Ephemeral supercontinents or long-lived supercratons. Geology, 49(7), 794-798. https://doi.org/10.1130/G48575.1
  21. Gamal El Dien, H., Li, Z.X., Abu Anbar, M., Doucet, L.S., Murphy, J.B., Evans, N.J., Xia, X.P., Li, J., 2021. The largest plagiogranite on Earth formed by re-melting of juvenile proto-continental crust. Communications Earth & Environment, 2, 138. https://doi.org/10.1038/s43247-021-00205-8
  22. Liebmann, J., Spencer, C.J., Kirkland, C.L., Bucholz, C.E., Xia, X.-P., Martin, L., Kitchen, N., Shumlyanskyy, L., 2021. Coupling sulfur and oxygen isotope ratios in sediment melts across the Archean-Proterozoic transition. Geochimica et Cosmochimica Acta, 307, 242-257. https://doi.org/10.1016/j.gca.2021.05.045
  23. Cui, Y., Shao, L., Li, Z.X., Zhu, W., Qiao, P., Zhang, X., 2021. A Mesozoic Andean-type active continental margin along coastal South China: New geological records from the basement of the northern South China Sea. Gondwana Research, 99, 36-52. https://doi.org/10.1016/j.gr.2021.06.021
  24. Collins, W.J., Murphy, J.B., Blereau, E., Huang, H.-Q., 2021. Water availability controls crustal melting temperatures. Lithos, 106351. https://doi.org/10.1016/j.lithos.2021.106351
  25. Mitchell, R.N., Gernon, T.M., Cox, G.M., Nordsvan, A.R., Kirscher, U., Xuan, C., Liu, Y., Liu, X., He, X., 2021. Orbital forcing of ice sheets during snowball Earth. Nature Communications, 12, 4187. https://doi.org/10.1038/s41467-021-24439-4
  26. Doucet, L.S., Li, Z.X., Gamal El Dien, H., 2021. Oceanic and super-deep continental diamonds share a transition zone origin and mantle plume transportation. Scientific Reports, In Press. https://doi.org/10.1038/s41598-021-96286-8
  27. Pisarevsky, S.A., Gladkochub, D.P., Donskaia, T.V., 2021. Chapter 8 – Precambrian paleogeography of Siberia. In: Pesonen, L.J., Salminen, J., Elming, S.-Å., Evans, D.A.D., Veikkolainen, T. (eds.) Ancient Supercontinents and the Paleogeography of Earth, Elsevier, 263-275. ISBN: 9780128185339. https://doi.org/10.1016/B978-0-12-818533-9.00012-6
  28. Kirscher, U., Nordsvan, A., Schmidt, P., 2021. Chapter 9 – Whence Australia: Its Precambrian drift history and paleogeography. In: Pesonen L.J., Salminen J., Elming S.-Å., Evans D.A.D., Veikkolainen T. (eds.) Ancient Supercontinents and the Paleogeography of Earth, Elsevier, 277-303. ISBN: 9780128185339. https://doi.org/10.1016/B978-0-12-818533-9.00018-7
  29. Evans, D.A.D., Pesonen, L.J., Eglington, B.M., Elming, S.-Å., Gong, Z., Li, Z.-X., McCausland, P.J., Meert, J.G., Mertanen, S., Pisarevsky, S.A., Pivarunas, A.F., Salminen, J., Swanson-Hysell, N.L., Torsvik, T.H., Trindade, R.I.F., Veikkolainen, T., Zhang, S., 2021. Chapter 19 – An expanding list of reliable paleomagnetic poles for Precambrian tectonic reconstructions. In: Pesonen, L.J., Salminen, J., Elming, S.-Å., Evans, D.A.D., Veikkolainen, T. (eds.) Ancient Supercontinents and the Paleogeography of Earth, Elsevier, 605-639. ISBN: 9780128185339. https://doi.org/10.1016/B978-0-12-818533-9.00007-2
  30. Wu, L., Huang, W., Liang, H., Murphy, J.B., Kirscher, U., Mitchell, R.N., Hawkins, L.M.A., Halverson, G.P., Gu, Y.J., Zhang, J., Liu, X., 2021. Paleomagnetism of the Guanyang Devonian sedimentary successions in Guangxi province, South China. Gondwana Research, In Press. https://doi.org/10.1016/j.gr.2021.09.004
  31. Wang, X.C., Li, Q., Wilde, S.A., Li, Z.X., Li, C., Lei, K., Li, S.J., Li, L., Pandit, M.K., 2021.  Decoupling between Oxygen and Radiogenic Isotopes: Evidence for Generation of Juvenile Continental Crust by Partial Melting of Subducted Oceanic Crust. Journal of Earth Science, 321212–1225. https://doi.org/10.1007/s12583-020-1095-2
  32. Lagain, A., Benedix, G.K., Servis, K., Baratoux, D., Doucet, L.S., Rajsick, A., Devillepoix, H.A.R, Bland, P.A., Towner, M.C., Sansom, E.K., Miljkovic, K., 2021. The Tharsis mantle source of depleted shergottites revealed by 90 million impact crater. Nature Communications, 12, 6352. https://doi.org/10.1038/s41467-021-26648-3
  33. Lloyd, S. J.Biggin, A. J., Li, Z.-X., 2021New paleointensity data suggest possible Phanerozoic-type paleomagnetic variations in the PrecambrianGeochemistry, Geophysics, Geosystems22, e2021GC009990. https://doi.org/10.1029/2021GC009990
  34. Yan, P., Zhang, N., Yuan, H., Qi, L., Liu, X., 2021. Possible South-dipping Mesozoic subduction at southern Tethys Ocean – constrained from global tectonics reconstructions and seismic tomography. Journal of Earth Science, 33, 13-33. https://doi.org/10.1007/s12583-021-1466-3
  35. Brennan, D.T., Mahoney, J.B., Li, Z.X., Link, P.K., Evans, N.J., Johnson, T.E., 2021. Detrital zircon U–Pb and Hf signatures of Paleo-Mesoproterozoic strata in the Priest River region, northwestern USA: A record of Laurentia assembly and Nuna tenure. Precambrian Research, 367, 106445. https://doi.10.1016/j.precamres.2021.106445

2020

  1. Zhang N., Behn M., Parmentier E.M., and Kincaid C., 2020. Melt Segregation and Depletion during Ascent of Buoyant Diapirs in Subduction Zones. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018203. https://doi.org/10.1029/2019JB018203
  2. Olierook, H.K.H., Jourdan, F., Whittaker, J.M., Merle, R.E., Jiang, Q., Pourteau, A., Doucet, L.S., 2020. Timing and causes of the mid-Cretaceous global plate reorganization event. Earth and Planetary Science Letters, 534, 116071.  https://doi.org/10.1016/j.epsl.2020.116071
  3. Tetley, M.G., Li, Z.-X., Matthews, K.J., Williams, S.E., Müller, R.D., 2020. Decoding earth’s plate tectonic history using sparse geochemical data. Geoscience Frontiers, 11(1), 265-276. https://doi.org/10.1016/j.gsf.2019.05.002
  4. Mitchell, R.N., Wu, L., Murphy, J.B., Li, Z.-X., 2020. Trial by fire: Testing the paleolongitude of Pangea of competing reference frames with the African LLSVP. Geoscience Frontiers, 11(4), 1253-1256. https://doi.org/10.1016/j.gsf.2019.12.002
  5. Wang, C., Peng, P., Li, Z.X., Pisarevsky, S., Denyszyn, S., Liu, Y., El Dien, H.G., Su, X. 2020. The 1.24–1.21 Ga Licheng large igneous province in the North China Craton: Implications for paleogeographic reconstruction. Journal of Geophysical Research: Solid Earth, 125(4), e2019JB019005. https://doi.org/10.1029/2019JB019005
  6. Nordsvan, A.R., Kirscher, U., Kirkland, C.L., Barham, M., Brennan, D.T., 2020. Resampling (detrital) zircon age distributions for accurate multidimensional scaling solutions. Earth-Science Reviews, 204, 103149. https://doi.org/10.1016/j.earscirev.2020.103149
  7. Cawood, P.A., Wang, W., Zhao, T., Xu, Y., Mulder, J.A., Pisarevsky, S.A., Zhang, L., Gan, C., He, H., Liu, H., Qi, L., Wang, Y., Yao, J., Zhao, G., Zhou, M.-F., Zi, J.-W., 2020. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth-Science Reviews, 204, 103169.  https://doi.org/10.1016/j.earscirev.2020.103169
  8. Beunon, H., Mattielli, N., Doucet, L.S., Moine, B., Debret, B., 2020. Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling. Earth-Science Reviews, 205, 103174. https://doi.org/10.1016/j.earscirev.2020.103174
  9. Collins, W.J., Murphy, J.B., Johnson, T.E., Huang, H.-Q., 2020. Critical role of water in the formation of continental crust. Nature Geoscience, 13, 331-338. https://doi.org/10.1038/s41561-020-0573-6
  10. Gan, B., Diwu, C., Yan, J., Wang, T., Li, J., 2020. Formation and stabilization of the Dunhuang Block, NW China: Constraints from the Late Paleoproterozoic A-type granites of the Dunhuang Complex. Precambrian Research, 346, 105791. https://doi.org/10.1016/j.precamres.2020.105791
  11. Doucet, L.S., Xu, Y., Klaessens, D., Hui, H., Ionov, D.A., Mattielli, N., 2020. Decoupled water and iron enrichments in the cratonic mantle: A study on peridotite xenoliths from Tok, SE Siberian Craton. American Mineralogist, 105(6), 803-819. https://doi.org/10.2138/am-2020-7316
  12. Gamal El Dien, H., Doucet, L.S., Murphy, J.B., Li, Z.-X., 2020. Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics. Scientific Reports, 10, 9461. https://doi.org/10.1038/s41598-020-66324-y
  13. Volante, S., Pourteau, A., Collins, W.J., Blereau, E., Li, Z.-X., Smit, M., Evans, N.J., Nordsvan, A.R., Spencer, C.J., McDonald, B.J., Li, J., Günter, C., 2020. Multiple P–T–d–t paths reveal the evolution of the final Nuna assembly in northeast Australia. Journal of Metamorphic Geology, 38(6), 593-627.  https://doi.org/10.1111/jmg.12532
  14. Li, T., Zhao, L., Wan, B., Li, Z.-X., Bodin, T., Wang, K., Yuan, H., 2020. New Crustal Vs model along an array in south‐east China: Seismic Characters and paleo‐Tethys continental amalgamation. Geochemistry, Geophysics, Geosystems, 21, e2020GC009024.  https://doi.org/10.1029/2020GC009024
  15. Vernikovskaya, A., Vernikovsky, V.A., Matushkin, N., Kadilnikov, P., Metelkin, D.V., Romanova, I., Li, Z.-X., Bogdanov, E., 2020. Early Ediacaran Magmatism in the Yenisei Ridge and Evolution of the Southwestern Margin of the Siberian Craton. Minerals, 10, 565.  https://doi.org/10.3390/min10060565
  16. Doucet, L.S., Laurent, O., Ionov, D.A., Mattielli, N., Debaille, V., Debouge, W., 2020. Archean lithospheric differentiation: Insights from Fe and Zn isotopes. Geology, 48(10), 1028-1032. https://doi.org/10.1130/G47647.1
  17. Beunon, H., Chernonozhkin, S.M., Mattielli, N., Goderis, S., Doucet, L.S., Debaille, V., Vanhaecke, F., 2020. Innovative two-step isolation of Ni prior to stable isotope ratio measurements by MC-ICP-MS: Application to igneous geological reference materials. Journal of Analytical Atomic Spectrometry, 35, 2213-2223.  https://doi.org/10.1039/D0JA00163E
  18. Doucet, L.S., Li, Z.X., Gamal El Dien, H., Pourteau, A., Murphy, J.B., Collins, W.J., Mattielli, N., Olierook, H.K.H., Spencer, C.J., Mitchell, R.N., 2020. Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience 13, 511–515.  https://doi.org/10.1038/s41561-020-0599-9
  19. Doucet, L.S., Li, Z.X., Ernst, R.E., Kirscher, U., Gamal El Dien, H., Mitchell, R.N., 2020. Coupled supercontinent–mantle plume events evidenced by oceanic plume record. Geology, 48(2), 159-163. https://doi.org/10.1130/G46754.1
  20. Meert, J.G., Pivarunas, A.F., Evans, D.A.D., Pisarevsky, S.A., Pesonen, L.J., Li, Z.X., Elming, S.-Å., Miller, S.R., Zhang, S., Salminen, J.M., 2020. The magnificent seven: A proposal for modest revision of the Van der Voo (1990) quality index. Tectonophysics, 790, 228549. https://doi.org/10.1016/j.tecto.2020.228549
  21. Gan, B., Li, Z.X., Song, Z., Li, J., 2020. Middle Cambrian granites in the Dunhuang Block (NW China) mark the early subduction of the southernmost Paleo-Asian Ocean. Lithos, 372-373, 105654.  https://doi.org/10.1016/j.lithos.2020.105654
  22. Kirscher, U., Gevorgyan, H., Meliksetian, K., Navasardyan, G., Dallanave, E., Breitkreuz, C., Bachtadse, V., 2020. Pleistocene ignimbrites of western Armenia – Paleomagnetic and magnetic anisotropy constraints on flow direction and stratigraphy. Journal of Volcanology and Geothermal Research, 402, 106982.  https://doi.org/10.1016/j.jvolgeores.2020.106982
  23. Pourteau, A., Doucet, L.S., Blereau, E.R., Volante, S., Johnson, T.E., Collins, W.J., Li, Z.X., Champion, D.C., 2020. TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia. Earth and Planetary Science Letters, 550, 116548.  https://doi.org/10.1016/j.epsl.2020.116548
  24. Qi, Y., Hawkesworth, C.J., Wang, Q., Wyman, D.A., Li, Z.X., Dong, H., Ma, T., Chen, F., Hu, W.L., Zhang, X.Z., 2020. Syn-collisional magmatic record of Indian steep subduction by 50 Ma. GSA Bulletin, In Press. https://doi.org/10.1130/B35498.1
  25. Fan, H.P., Zhu, W.G., Li, Z.X., 2020. Paleo- to Mesoproterozoic magmatic and tectonic evolution of the southwestern Yangtze Block, south China: New constraints from ca. 1.7–1.5 Ga mafic rocks in the Huili-Dongchuan area. Gondwana Research, 87, 248-262. https://doi.org/10.1016/j.gr.2020.06.019
  26. Volante, S., Collins, W.J., Pourteau, A., Li, Z.-X., Li, J., Nordsvan, A.R., 2020. Structural Evolution of a 1.6 Ga Orogeny Related to the Final Assembly of the Supercontinent Nuna: Coupling of Episodic and Progressive Deformation. Tectonics, 39(10),  e2020TC006162. https://doi.org/10.1029/2020TC006162
  27. Yang, C., Li, X.-H., Li, Z.-X., Zhu, M., Lu, K., 2020. Provenance Evolution of Age‐Calibrated Strata Reveals When and How South China Block Collided With Gondwana. Geophysical Research Letters, 47(19), e2020GL090282. https://doi.org/10.1029/2020GL090282
  28. Li, J., Pourteau, A., Li, Z.-X., Jourdan, F., Nordsvan, A.R., Collins, W.J., Volante, S., 2020. Heterogeneous exhumation of the Mount Isa orogen in NE Australia after 1.6 Ga Nuna assembly: new high‐precision 40Ar/39Ar thermochronological constraints. Tectonics, e2020TC006129. https://doi.org/10.1029/2020TC006129
  29. Volante, S., Collins, W.J., Blereau, E., Pourteau, A., Spencer, C., Evans, N.J., Barrote, V., Nordsvan, A.R., Li, Z.-X., Li, J., 2020. Reassessing zircon-monazite thermometry with thermodynamic modelling: insights from the Georgetown igneous complex, NE Australia. Contributions to Mineralogy and Petrology, 175, 110. https://doi.org/10.1007/s00410-020-01752-7
  30. Martin, E.L., Spencer, C.J., Collins, W.J., Thomas, R.J., Macey, P.H., Roberts, N.M.W., 2020. The core of Rodinia formed by the juxtaposition of opposed retreating and advancing accretionary orogens. Earth-Science Reviews, 211, 103413. https://doi.org/10.1016/j.earscirev.2020.103413
  31. Dang, Z., Zhang, N., Li, ZX., Huang, C., Spencer, C.J., Liu, Y., 2020. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Communications Earth & Environment, 1, 51. https://doi.org/10.1038/s43247-020-00052-z
  32. Murphy, J.B.Nance, R.D.Cawood, P.A.Collins, W.J.Dan, W.Doucet, L.S.Heron, P.J.Li, Z.-X.Mitchell, R.N.Pisarevsky, S.Pufahl, P.K.Quesada, C.Spencer, C.J.Strachan, R.A., Wu, L., 2020. Pannotia: In defence of its existence and geodynamic significance. 

2019

  1. Yao, W., Li, Z.X., 2019. Tectonostratigraphy and provenance analysis to define the edge and evolution of the eastern Wuyi-Yunkai orogen, South China. Geological Magazine, 156(1), 83-98.  doi.org/10.1017/S0016756817000784
  2. Pourteau, A., Scherer, E.E., Schorn, S., Bast, R., Schmidt, A., Ebert, L., 2019. Thermal evolution of an ancient subduction interface revealed by Lu–Hf garnet geochronology, Halilbağı Complex (Anatolia). Geoscience Frontiers, 10(1), 127-148.  doi.org/10.1016/j.gsf.2018.03.004
  3. Gladkochub, D.P., Donskaya, T.V., Stanevich, A.M., Pisarevsky, S.A., Zhang, S., Motova, Z.L., Mazukabzov, A.M., Li, H., 2019. U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: New insights into breakup of Rodinia and opening of Paleo-Asian Ocean. Gondwana Research, 65, 1-16.  doi.org/10.1016/j.gr.2018.07.007
  4. Krijgsman, W., Tesakov, A., Yanina, T., Lazarev, S., Danukalova, G., Van Baak, C.G.C., Agustí, J., Alçiçek, M.C., Aliyeva, E., Bista, D., Bruch, A., Büyükmeriç, Y., Bukhsianidze, M., Flecker, R., Frolov, P., Hoyle, T.M., Jorissen, E.L., Kirscher, U., Koriche, S.A., Kroonenberg, S.B., Lordkipanidze, D., Oms, O., Rausch, L., Singarayer, J., Stoica, M., van de Velde, S., Titov, V.V., Wesselingh, F.P., 2019. Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution. Earth-Science Reviews, 188, 1-40.  doi.org/10.1016/j.earscirev.2018.10.013
  5. Hu, X.-K., Tang, L., Zhang, S.-T., Santosh, M., Spencer, C.J., Zhao, Y., Cao, H.-W., Pei, Q.-M., 2019. In situ trace element and sulfur isotope of pyrite constrain ore genesis in the Shapoling molybdenum deposit, East Qinling Orogen, China. Ore Geology Reviews, 105, 123-136. doi.org/10.1016/j.oregeorev.2018.12.019
  6. Li, Z.X., Mitchell, R.N., Spencer, C.J., Ernst, R., Pisarevsky, S., Kirscher, U., Murphy, J.B., 2019. Decoding Earth’s rhythms: modulation of supercontinent cycles by longer superocean episodes. Precambrian Research, 323, 1-5.  doi.org/10.1016/j.precamres.2019.01.009
  7. Keller, C.B., Husson, J.M., Mitchell, R.N., Bottke, W.F., Gernon, T.M., Boehnke, P., Bell, E.A., Swanson-Hysell, N.L., Peters, S.E., 2019. Neoproterozoic glacial origin of the Great Unconformity.  Proceedings of the National Academy of Sciences, doi.org/10.1073/pnas.1804350116
  8. Scheffler, F., Immenhauser, A., Pourteau, A., Natalicchio, M., Candan, O., Oberhänsli, O., 2019. A lost Tethyan evaporitic basin: Evidence from a Cretaceous hemipelagic meta‐selenite – red chert association in the Eastern Mediterranean realm. Sedimentology, 66(7), 2627-2660. doi.org/10.1111/sed.12606
  9. Liu, P., Liu, Y., Hu, Y., Yang, J., Pisarevsky, S.A., 2019. Warm Climate in the “Boring Billion” Era. Acta Geologica Sinica, 93(supp.1), 40–43.
  10. Mitchell, R.N., Gernon, T.M., Nordsvan, A., Cox, G.M., Li, Z.X., Hoffman, P.F., 2019. Hit or miss: Glacial incisions of snowball Earth. Terra Nova, 31, 381– 389. doi.org/10.1111/ter.12400
  11. Li, H., Zhang, N., Liang, Y., Wu, B., Dygert, N. J., Huang, J., & Parmentier, E. M., 2019. Lunar cumulate mantle overturn: A model constrained by ilmenite rheology. Journal of Geophysical Research: Planets, 124, 1357–1378. https://doi.org/10.1029/2018JE005905
  12. Gamal El Dien, H., Li, Z.X., Kil, Y., Abu-Alam, T., 2019. Origin of arc magmatic signature: A temperature dependent process for trace element (re)-mobilization in subduction zones. Scientific Reports, 9, 7098. doi.org/10.1038/s41598-019-43605-9
  13. Jiang, X., Li, Z.X., Li, C., Gong, W., 2019. A gravity study of the Longmenshan Fault Zone: New insights into the nature and evolution of the fault zone and extrusion-style growth of the Tibetan Plateau since 40 Ma. Tectonics, 38, 176-189. doi.org/10.1029/2018TC005272. Free online access availabe from rdcu.be/bgSRh.
  14. Kirscher, U., Liu, Y., Li, Z.X., Mitchell, R.N., Pisarevsky, S.A., Denyszyn, S.W., Nordsvan, A., 2019. Paleomagnetism of the Hart Dolerite (Kimberley, Western Australia) – A two-stage assembly of the supercontinent Nuna? Precambrian Research, 329, 170-181. doi.org/10.1016/j.precamres.2018.12.026
  15. Tao, N., Li, Z.-X., Danišík, M., Evans, N.J., Li, R.-X., Pang, C.-J., Li, W.-X., Jourdan, F., Yu, Q., Liu, L.-P., Batt, G.E., Xu, Y.-G., 2019. Post-250 Ma thermal evolution of the central Cathaysia Block (SE China) in response to flat-slab subduction at the proto-Western Pacific margin. Gondwana Research, 75, 1-15. doi.org/10.1016/j.gr.2019.03.019
  16. Spencer, C.J., Partin, C.A., Kirkland, C.L., Liebmann, J., Raub, T.D., EIMF, 2019. Paleoproterozoic increase in zircon δ18O driven by rapid emergence of continental crust. Geochimica et Cosmochimica Acta, 257, 16-25. doi.org/10.1016/j.gca.2019.04.016
  17. Spencer, C.J., Danišík, M., Ito, H., Hoiland, C., Tapster, S., Jeon, H., McDonald, B., Evans, N.J., 2019. Rapid exhumation of Earth’s youngest exposed granites driven by subduction of an oceanic arc. Geophysical Research Letters, 46, 1259– 1267.  doi.org/10.1029/2018GL080579
  18. Spencer, C.J., Kirkland, C.L., Prave, A.R., Daly, J.S., Strachan, R.A., Pease, V., 2109. Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region. Geoscience Frontiers, 10(2), 417-424.  doi.org/10.1016/j.gsf.2018.09.008
  19. Manda, B., Cawood, P.A., Spencer, C.J., Prave, T., Robinson, R., Roberts, N., 2109. Evolution of the Mozambique Belt in Malawi constrained by granitoid U-Pb, Sm-Nd, and Lu-Hf isotopic data. Gondwana Research, 68, 93-107. doi.org/10.1016/j.gr.2018.11.004
  20. Milanese, F.N., Olivero, E.B., Raffi, M.E., Franceschinis, P.R., Gallo, L.C., Skinner, S.M., Mitchell, R.N., Kirschvink, J.L., Rapalini, A.E., 2019. Mid Campanian‐Lower Maastrichtian magnetostratigraphy of the James Ross Basin, Antarctica: Chronostratigraphical implications. Basin Research, 31(3), 562-583. doi.org/10.1111/bre.12334
  21. Spencer, C.J., Murphy, J.B., Hoiland, C.W., Johnston, S.T., Mitchell, R.N., Collins, W.J., 2019. Evidence for whole mantle convection driving Cordilleran tectonics. Geophysical Research Letters, 46, 4239-4248. doi.org/10.1029/2019GL082313
  22. Wang, C., Li, Z.X., Peng, P., Pisarevsky, S., Liu Y., Kirscher, U., Nordsvan, A., 2019. Long-lived connection between the North China and North Australian cratons in supercontinent Nuna: paleomagnetic and geological constraints. Science Bulletin, 64, 873-876. doi.org/10.1016/j.scib.2019.04.028
  23. Olierook, H.K.H., Agangi, A., Plavsa, D., Reddy, S.M., Yao, W., Clark, C., Occhipinti, S.A., Kylander-Clark, A.R.C., 2019. Neoproterozoic hydrothermal activity in the West Australian Craton related to Rodinia assembly or breakup? Gondwana Research, 68, 1-12.  doi.org/10.1016/j.gr.2018.10.019
  24. Gladkochub, D.P., Donskaya, T.V., Ernst, R.E., Hamilton, M.A., Mazukabzov, A.M., Pisarevsky, S.A., Kamo, S., 2019. A New Ectasian Event of Basitic Magmatism in the Southern Siberian Craton. Doklady Earth Sciences, 486(1), 507-511.  doi.org/10.1134/S1028334X19050222
  25. Martin, E.L., Collins, W.J., Spencer, C.J., 2019. Laurentian origin of the Cuyania suspect terrane, western Argentina, confirmed by Hf isotopes in zircon. GSA Bulletin.  doi.org/10.1130/B35150.1
  26. Mitchell, R.N., Spencer, C.J., Kirscher, U., He, X.-F., Murphy, J.B., Li, Z.-X., Collins, W.J., 2019. Harmonic hierarchy of mantle and lithospheric convective cycles: Time series analysis of hafnium isotopes of zircon. Gondwana Research, 75, 239-248.  doi.org/10.1016/j.gr.2019.06.003
  27. Bucholz, C.E., Spencer, C.J., 2019. Strongly Peraluminous Granites across the Archean–Proterozoic Transition. Journal of Petrology, 60(7), 1299-1348.  doi.org/10.1093/petrology/egz033
  28. Tong, L., Liu, Z., Li, Z.-X., Liu, X., Zhou, X., 2019. Poly-phase metamorphism of garnet-bearing mafic granulite from the Larsemann Hills, East Antarctica: P-T path, U-Pb ages and tectonic implications. Precambrian Research, 326, 385-398.  doi.org/10.1016/j.precamres.2017.12.045
  29. Baker, T.R., Prave, A.R., Spencer, C.J., 2019. 1.99 Ga mafic magmatism in the Rona terrane of the Lewisian Gneiss Complex in Scotland. Precambrian Research, 329, 224-231.  doi.org/10.1016/j.precamres.2018.12.027
  30. Tang, L., Hu, X.-K., Santosh, M., Zhang, S.-T., Spencer, C.J., Jeon, H., Zhao, Y., Cao, H.-W., 2019. Multistage processes linked to tectonic transition in the genesis of orogenic gold deposit: A case study from the Shanggong lode deposit, East Qinling, China. Ore Geology Reviews, 111, 102998. doi.org/10.1016/j.oregeorev.2019.102998
  31. Spencer, C.J., Kirkland, C.L., Roberts, N.M.W., Evans, N.J., Liebmann, J., 2019. Strategies towards robust interpretations of in situ zircon Lu-Hf isotope analyses. Geoscience Frontiers, In Press. doi.org/10.1016/j.gsf.2019.09.004
  32. Zhang, C., Jiang, S., Liu, D.-D., Chakrabarti, R., Zeng, J.-H., Santosh, M., Luo, Q., Spencer, C.J., Ma, C., Liu, L.-F., Kong, X.-Y., 2019. A novel model for silicon recycling in the lithosphere: Evidence from the Central Asian Orogenic Belt. Gondwana Research, 76, 115-122. doi.org/10.1016/j.gr.2019.06.009
  33. Liu, Y., Li, Z.-X., Pisarevsky, S., Kirscher, U., Mitchell, R.N., Stark, J.C., 2019. Palaeomagnetism of the 1.89 Ga Boonadgin dykes of the Yilgarn Craton: Possible connection with India, Precambrian Research, 329, 211-223.  doi.org/10.1016/j.precamres.2018.05.021
  34. Stark, J.C., Wang, X.C., Denyszyn, S.W., Li, Z.X., Rasmussen, B., Zi, J.W., Sheppard, S., Liu, Y., 2019. Newly identified 1.89 Ga mafic dyke swarm in the Archean Yilgarn Craton, Western Australia suggests a connection with India. Precambrian Research, 329, 156-169.  doi.org/10.1016/j.precamres.2017.12.036
  35. Gosso, G., Lardeaux, J.-M., Zanoni, D., Volante, S., Corsini, M., Bersezio, R., Mascle, J., Spaggiari, L., Spalla, M.I., Zucali, M., Giannerini, G., Camera, L., 2019. Mapping the progressive geologic history at the junction of the Alpine Mountain Belt and the Western Mediterranean Ocean. Ofioliti, 44(2), 97-110. doi.org/10.4454/ofioliti.v44i2.527
  36. Nordsvan, A.R., Barham, M., Cox, G., Kirscher, U., Mitchell, R.N., 2019. Major shoreline retreat and sediment starvation following Snowball Earth. Terra Nova, 31(6), 495-502. https://doi.org/10.1111/ter.12426
  37. Huang, C., Zhang, N., Li, Z.‐X., Ding, M., Dang, Z., Pourteau, A., Zhong, S., 2019. Modeling the inception of supercontinent breakup: Stress state and the importance of orogens. Geochemistry, Geophysics, Geosystems, 20(11), 4830-4848. https://doi.org/10.1029/2019GC008538
  38. Böhme, M., Spassov, N., Fuss, J., Tröscher, A., Deane, A.S., Prieto, J., Kirscher, U., Lechner, T., Begun, D.R., 2019. A new Miocene ape and locomotion in the ancestor of great apes and humans. Nature, 575, 489–493. https://doi.org/10.1038/s41586-019-1731-0
  39. Hofmayer, F., Kirscher, U., Sant, K., Krijgsman, W., Fritzer, T., Jung, D., Weissbrodt, V., Reichenbacher, B., 2019. Three-dimensional geological modeling supports a revised Burdigalian chronostratigraphy in the North Alpine Foreland Basin. International Journal of Earth Sciences, Accepted article.
  40. Gamal El Dien, H., Arai, S., Doucet. L.S., Li, Z.X., Kil, Y., Fougerouse, D., Reddy, S.M., Saxey, D.W., Hamdy, M., 2019. Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nature Communications, 10, 5103.  https://doi.org/10.1038/s41467-019-13117-1
  41. Gamal El Dien, H.Doucet. L.S., Li, Z.X., Cox, G., Mitchell, R., 2019. Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle. Nature Communications, 10, 5270. https://doi.org/10.1038/s41467-019-13300-4
  42. McCausland, P.J.A., Murphy, J.B., Pisarevsky, S.A., Hall, C.M., Flemming, R.L., O’Brien, S.J., 2019. Early Avalonian arc paleogeography: preliminary paleomagnetism and 40AR/39AR geochronology of Neoproterozoic units, Burin Peninsula, Newfoundland, Canada. Atlantic Geology, 55, Geological Association of Canada – Newfoundland and Labrador Section Abstracts – 2019 Spring Technical Meeting. https://doi.org/10.4138/atlgeol.2019.007
  43. Vernikovskaya, A.E., Vernikovsky, V.A., Matushkin, N.Y.,  Kadilnikov, P.I., Metelkin, D.V., Li, Z.-X., Wilde, S.A., Romanova, I.V., Bogdanov, E.A., 2019. Dike Magmatism in the Evolution of the Transform Active Continental Margin of the Siberian Craton in the Ediacaran. Doklady Earth Sciences, 489, 1285–1288. https://doi.org/10.1134/S1028334X19110266

2018

  1. Zhang, N., Li, Z.-X., 2018. Formation of mantle “lone plumes” in the global downwelling zone — A multiscale modelling of subduction-controlled plume generation beneath the South China Sea. Tectonophysics, 723, 1-13.  doi.org/10.1016/j.tecto.2017.11.038
  2. Gong, Z., Xu, X., Evans, D.A.D., Hoffman, P.F., Mitchell, R.N., Bleeker, W., 2018. Paleomagnetism and rock magnetism of the ca. 1.87 Ga Pearson Formation, Northwest Territories, Canada: A test of vertical-axis rotation within the Great Slave basin. Precambrian Research, 305, 295-309. doi.org/10.1016/j.precamres.2017.11.021
  3. Doucet, L.S., Laurent, O., Mattielli, N., Debouge, W., 2018. Zn isotope heterogeneity in the continental lithosphere: New evidence from Archean granitoids of the northern Kaapvaal craton, South Africa. Chemical Geology, 476, 260-271. doi.org/10.1016/j.chemgeo.2017.11.022
  4. Palozzi, J., Pantopoulos, G., Maravelis, A.G., Nordsvan, A., Zelilidis, A., 2017.  Sedimentological analysis and bed thickness statistics from a Carboniferous deep-water channel-levee complex: Myall Trough, SE Australia. Sedimentary Geology, 364, 160-179.  doi.org/10.1016/j.sedgeo.2017.12.019
  5. Nordsvan, A.R., Collins, W.J., Li, Z.X., Spencer, C.J., Pourteau, A., Withnall, I.W., Betts, P.G., Volante, S., 2018. Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna. Geology, 46(3), 251-254. doi.org/10.1130/G39980.1
  6. Spencer, C.J., Murphy, J.B., Kirkland, C.L., Liu, Y., Mitchell, R.N., 2018. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nature Geoscience, 11, 97-101. doi.org/10.1038/s41561-017-0051-y
  7. Kirscher, U., Winklhofer, M., Hackl, M., Bachtadse, V., 2018. Detailed Jaramillo field reversals recorded in lake sediments from Armenia – Lower mantle influence on the magnetic field revisited. Earth and Planetary Science Letters, 484, 124-134.  doi.org/10.1016/j.epsl.2017.12.010
  8. Dwyer, R.C., Collins, W.J., Hack, A.C., Hegarty, R., Huang, H., 2018. Age and tectonic significance of the Louth Volcanics: implications for the evolution of the Tasmanides of eastern Australia. Australian Journal of Earth Sciences65(7-8), 1049-1069.  doi.org/10.1080/08120099.2018.1469392
  9. Antill, L.M., Beardmore, J.P., Woodward, J.R., 2018. Time-resolved optical absorption microspectroscopy of magnetic field sensitive flavin photochemistry. Review of Scientific Instruments, 89, 023707.  doi.org/10.1063/1.5011693
  10. Dallanave, E., Kirscher, U., Hauck, J., Hesse, R., Bachtadse, V., Wortmann, U.G., 2018. Paleomagnetic time and space constraints of the Early Cretaceous Rhenodanubian Flyschzone (Eastern Alps). Geophysical Journal International, 213(3), 1804–1817.  doi.org/10.1093/gji/ggy077
  11. Zhang, N., Dang, Z., Huang, C., Li, Z.X., 2018. The dominant driving force for supercontinent breakup: Plume push or subduction retreat? Geoscience Frontiers, 9(4), 997-1007. doi.org/10.1016/j.gsf.2018.01.010
  12. Ionov, D.A., Doucet, L.S., Xu, Y., Golovin, A.V., Oleinikov, O.B., 2018. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochimica et Cosmochimica Acta, 224, 132-153. doi.org/10.1016/j.gca.2017.12.028
  13. Cox, G.M., Lyons, T.W., Mitchell, R.N., Hasteroka, D., Garda, M., 2018. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth and Planetary Science Letters, 489, 28-36.  doi.org/10.1016/j.epsl.2018.02.016
  14. Priyatkina, N., Collins, W.J., Khudoley, A.K., Letnikova, E.F., Huang, H.Q., 2018. The Neoproterozoic evolution of the western Siberian Craton margin: U-Pb-Hf isotopic records of detrital zircons from the Yenisey Ridge and the Prisayan Uplift. Precambrian Research, 305, 197-217.  doi.org/10.1016/j.precamres.2017.12.014
  15. Wang, R., Weinberg, R.F., Collins, W.J., Richards, J.P, and Di-cheng Zhu, D.C., 2018. Origin of post-collisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth Science Reviews, 181, 122-143.  doi.org/10.1016/j.earscirev.2018.02.019
  16. Henderson, B.J., Collins, W.J., Murphy, J.B., Hand, M., 2018. A hafnium isotopic record of magmatic arcs and continental growth in the Iapetus Ocean: The contrasting evolution of Ganderia and the peri-Laurentian margin. Gondwana Research, 58, 141-160.  doi.org/10.1016/j.gr.2018.02.015
  17. Murphy, J.B., Shellnutt, J.G., Collins, W.J., 2018. Late Neoproterozoic to Carboniferous genesis of A-type magmas in Avalonia of northern Nova Scotia: repeated partial melting of anhydrous lower crust in contrasting tectonic environments. International Journal of Earth Sciences, 107(2), 587–599. doi.org/10.1007/s00531-017-1512-7
  18. Bhattacharya, S., Kemp, A.I.S., Collins, W.J., 2018. Response of zircon to melting and metamorphism in deep arc crust, Fiordland (New Zealand): implications for zircon inheritance in cordilleran granites. Contributions to Mineralogy and Petrology, 173: 28.  doi.org/10.1007/s00410-018-1446-5
  19. Pippèrr, M., Reichenbacher, B., Kirscher, U., Sant, K., Hanebeck, H., 2018. The middle Burdigalian in the North Alpine Foreland Basin (Bavaria, SE Germany) – a lithostratigraphic, biostratigraphic and magnetostratigraphic re-evaluation. Newsletters on Stratigraphy, 51(3), 285-309.  doi.org/10.1127/nos/2017/0403
  20. Ding, M., Zhang, N., 2018. Early Geologic History of the Moon. In: Cudnik B. (eds), Encyclopedia of Lunar Science. Springerdoi.org/10.1007/978-3-319-05546-6_8-1
  21. Maravelis, A.G., Catuneanu, O., Nordsvan, A., Landenberger, B., Zelilidis, A., 2018. Interplay of tectonism and eustasy during the Early Permian icehouse: Southern Sydney Basin, southeast Australia. Geological Journal, 53(4), 1372-1403.  doi.org/10.1002/gj.2962
  22. Venkataramani, D., Musgrave, R.J., Boutelier, D.A., Hack, A.C., Collins, W.J., 2018. Revised potential field model of the Gilmore Fault Zone. Exploration Geophysics49(4), 572-583doi.org/10.1071/EG16148
  23. Stark, J.C., Wang, X.-C., Li, Z.-X., Rasmussen, B., Sheppard, S., Zi, J.-W., Clark, C., Hand, M., Li, W.-X., 2018. In situ U-Pb geochronology and geochemistry of a 1.13 Ga mafic dyke suite at Bunger Hills, East Antarctica: The end of the Albany-Fraser Orogeny. Precambrian Research, 310, 76-92.  doi.org/10.1016/j.precamres.2018.02.023
  24. Kuznetsov, N.B., Priyatkina, N.S., Rud’ko, S.V., Shatsillo, A.V., Collins, W.J., Romanyuk, T.V., 2018. Primary Data on U/Pb-Isotope Ages and Lu/Hf-Isotope Geochemical Systematization of Detrital Zircons from the Lopatinskii Formation (Vendian–Cambrian Transition Levels) and the Tectonic Nature of Teya–Chapa Depression (Northeastern Yenisei Ridge). Doklady Earth Sciences, 479(1), 286–289. doi.org/10.1134/S1028334X18030042
  25. Spencer, C.J., Dyck, B., Mottram, C.M., Roberts, N.M.W., Yao, W., Martin, E.L., 2018. Deconvolving the pre-Himalayan Indian margin – Tales of crustal growth and destruction. Geoscience Frontiers, 10(3), 863-872.  doi.org/10.1016/j.gsf.2018.02.007
  26. Ionov, D.A., Doucet, L.S., Carlson, R.W., Golovin, A.V., Oleinikov, O.B., 2018. Lost in interpretation: Facts and misconceptions about the mantle of the Siberian craton. A comment on: “Composition of the lithospheric mantle in the northern part of Siberian craton: Constraints from peridotites in the Obnazhennaya kimberlite” by Sun et al. (2017). Lithos, 314-315, 683-687.  doi.org/10.1016/j.lithos.2018.03.020
  27. Wong, S.C.T., Collins, W.J., Hack, A.C., Huang, H., 2018. Provenance and structure of the Yancannia Formation, southern Thomson Orogen: implications for the tectono-stratigraphic evolution of the Cambro-Ordovician western Tasmanides. Australian Journal of Earth Sciences65:7-8, 1097-1121. doi.org/10.1080/08120099.2018.1464062
  28. Roda, M., Zucali, M., Li, Z.-X., Spalla, M.I., Yao, W., 2018. Pre-Alpine contrasting tectono-metamorphic evolutions within the Southern Steep Belt, Central Alps. Lithos, 310–311, 31-49. doi.org/10.1016/j.lithos.2018.03.025
  29. Yao, W., Li, Z.X., Spencer, C.J., Martin, E.L., 2018. Indian-derived sediments deposited in Australia during Gondwana assembly. Precambrian Research, 312, 23-37.  doi.org/10.1016/j.precamres.2018.05.006
  30. Wang, K., Li, Z.-X., Dong, S., Cui, J., Han, B., Zheng, T., Xu, Y., 2018. Early crustal evolution of the Yangtze Craton, South China: New constraints from zircon U-Pb-Hf isotopes and geochemistry of ca. 2.9–2.6 Ga granitic rocks in the Zhongxiang Complex. Precambrian Research, 314, 325-352.  doi.org/10.1016/j.precamres.2018.05.016
  31. Stark, J.C., Wilde, S.A., Söderlund, U., Li, Z.-X., Rasmussen, B., Zi, J.-W., 2018. First evidence of Archean mafic dykes at 2.62 Ga in the Yilgarn Craton, Western Australia: links to cratonisation and the Zimbabwe Craton. Precambrian Research, 317, 1–13. doi.org/10.1016/j.precamres.2018.08.004
  32. Stark, J.C., Wang, X.-C., Li, Z.-X., Denyszyn, S.W., Rasmussen, B., Zi, J.-W., Sheppard, S., 2018. 1.39 Ga mafic dyke swarm in southwestern Yilgarn Craton marks Nuna to Rodinia transition in the West Australian Craton. Precambrian Research, 316, 291-304. doi.org/10.1016/j.precamres.2018.08.014
  33. Pourteau, A., Smit, M.A., Li, Z.-X., Collins, W.J., Nordsvan, A.R., Volante, S., Li, J., 2018. 1.6 Ga crustal thickening along the final Nuna suture. Geology46(11), 959-962.  doi.org/10.1130/G45198.1
  34. Wang, K., Dong, S., Li, Z.-X., Han, B., 2018. Age and chemical composition of Archean metapelites in the Zhongxiang Complex and implications for early crustal evolution of the Yangtze Craton. Lithos, 321-321, 280-301.  doi.org/10.1016/j.lithos.2018.09.027
  35. Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., Nebel, O., 2018. Geological archive of the onset of plate tectonics. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 376.  doi.org/10.1098/rsta.2017.0405
  36. Bachtadse, V., Aubele, K., Muttoni, G., Ronchi, A., Kirscher, U., Kent, D.V., 2018. New early Permian paleopoles from Sardinia confirm intra-Pangea mobility. Tectonophysics, 749, 21-34. doi.org/10.1016/j.tecto.2018.10.012
  37. Liu, Y., Li, Z.-X., Pisarevsky, S., Kirscher, U., Mitchell, R.N., Stark, J.C., Clark, C., Hand, M., 2018. First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications. Scientific Reports, 8: 16403.  doi.org/10.1038/s41598-018-34748-2
  38. Barrier, E., Vrielynck, B., Brouillet, J.F., Brunet M.F. (Contributors : Angiolini, L., Kaveh, F., Poisson, A., Pourteau, A., Plunder, A., Robertson, A., Shekawat, R., Sosson, M., Zanchi, A.) 2018. Paleotectonic Reconstruction of the Central Tethyan Realm. Tectonono-Sedimentary-Palinspastic maps from Late Permian to Pliocene. CCGM/CGMW, Paris, www.ccgm.org. Atlas of 20 maps (scale: 1/15 000 000).
  39. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A. M., Denyszyn, S., Pisarevsky, S. A., Motova, Z.L., Demonterova, E. I., 2018. The oldest (~1.9 Ga) metadolerites of the southern Siberian craton: age, petrogenesis, and tectonic setting. Russian Geology and Geophysics, 59(12), 1548-1559.  doi.org/10.1016/j.rgg.2018.12.002
  40. Donskaya, T.V., Gladkochub, D.P., Ernst, R. E., Pisarevsky, S. A., Mazukabzov, A. M., Demonterova, E. I., 2018. Geochemistry and petrogenesis of Mesoproterozoic Dykes of the Irkutsk Promontory, southern part of the Siberian Craton. Minerals, 8(12), 545.  doi.org/10.3390/min8120545
  41. Wang, L.-J., Guo, J.-H, Yin, C, Peng, P., Zhang, J., Spencer, C.J., Qiana, J.-H, 2018. High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma. Lithos, 320-321, 435-453.  doi.org/10.1016/j.lithos.2018.09.035
  42. Mulder, J., Karlstrom, K., Halpin, J., Spencer, C.J., Berry, R., Merdith, A., McDonald, B., 2018. Rodinian devil in disguise: Correlation of 1.25-1.10 Ga strata between Tasmania and Grand Canyon. Geology, 46, 991-994.  doi.org/10.1130/G45225.1
  43. Johnson, T.E., Miljkovic, K., Spencer, C.J., Gardiner, N.J., Kirkland, C.L., Bland, P., Smithies, H., 2018. An impact melt origin for Earth’s oldest known evolved rocks. Nature Geoscience, 11, 795-799.  doi.org/10.1038/s41561-018-0206-5
  44. Gilmer, A.K. Sparks, R.S.J., Blundy,, J.D., Rust, A.C., Hauff, F, Spencer, C.J., 2018. Petrogenesis and assembly of the Don Manuel igneous complex, Miocene-Pliocene porphyry copper belt, Central Chile. Journal of Petrology, 59(6), 1067-1108.  doi.org/10.1093/petrology/egy055
  45. Spencer, C.J., Kirkland, C.L., Roberts, N.M.W., 2018. Implications of erosion and bedrock composition on zircon fertility: Examples from South America and Western Australia. Terra Nova, 30, 289-295.  doi.org/10.1111/ter.12338
  46. Gardiner, N.J., Searle, M.P., Morley, C.K., Robb, L.J., Whitehouse, M.J., Roberts, N.M.W., Kirkland, C.L., Spencer, C.J., 2018. The Crustal Architecture of Myanmar Imaged Through Zircon U-Pb, Lu-Hf, and O Isotopes: Tectonic and Metallogenic Implications. Gondwana Research, 62, 27-60. doi.org/10.1016/j.gr.2018.02.008
  47. Pastor-Galán, D., Nance, D., Murphy, J.B., Spencer, C.J., 2018. Supercontinents: myths, mysteries, and milestones. Geological Society of London Special Publications, 470, 16. doi.org/10.1144/SP470.16
  48. Cox, G.M., Isakson, V., Hoffman, P.F., Gernon, T.M., Schmitz, M.D., Shahin, S., Collins, A.S., Preiss, W., Blades, M.L., Mitchell, R.N., Nordsvan, A., 2018. South Australian U-Pb (CA-ID-TIMS) age supports globally synchronous Sturtian glaciation. Precambrian Research, 315, 257-263. doi.org/10.1016/j.precamres.2018.07.007
  49. Cox, G.M., Halverson, G.P., Denyszyn, S., Foden, J., Macdonald, F.A., 2018. Cryogenian magmatism along the north-western margin of Laurentia: Plume or rift? Precambrian Research, 319, 144-157.  doi.org/10.1016/j.precamres.2017.09.025

2017

  1. Puetz, S.J., Condie, K.C., Pisarevsky, S.A., Davaille, A., Schwarz, C.J., Ganade, C.E., 2017. Quantifying the evolution of the continental and oceanic crust. Earth-Science Reviews, 164, 63-83.  doi.org/10.1016/j.earscirev.2016.10.011
  2. Belica, M.E., Tohver, E., Pisarevsky, S.A., Jourdan, F., Denyszyn, S., George. A.D., 2017. Middle Permian paleomagnetism of the Sydney Basin, Eastern Gondwana: Testing Pangea models and the timing of the end of the Kiaman Reverse Superchron. Tectonophysics, 699, 178-198.  doi.org/10.1016/j.tecto.2016.12.029
  3. Lubnina, N.V., Pisarevsky, S.A., Stepanova, A.V., Bogdanova, S.V., Sokolov, S.J., 2017. Fennoscandia before Nuna/Columbia: paleomagnetism of 1.98−1.96 Ga mafic rocks of the Karelian craton and paleogeographic implications. Precambrian Research, 292, 1-12.  doi.org/10.1016/j.precamres.2017.01.011
  4. Cawood, P.A., Pisarevsky, S.A., 2017. Laurentia-Baltica-Amazonia relations during Rodinia assembly. Precambrian Research, 292, 386-397. doi.org/10.1016/j.precamres.2017.01.031
  5. Yao, W.H., Li, Z.X., Li, W.-X., Li, X.-H., 2017. Proterozoic tectonics of Hainan Island in supercontinent cycles: new insights from geochronological and isotopic results. Precambrian Research, 290, 86-100. doi.org/10.1016/j.precamres.2017.01.001
  6. Ma, L., Wang, Q., Li, Z.X., Wyman, D.A., Yang, J.H., Wu, F.Y., Jiang, Z.Q., Gou, G.N., Guo, H.F., 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (~ 35 Ma): Insights from the Quguosha gabbros in southern Lhasa block. Gondwana Research, 41, 77-92. doi.org/10.1016/j.gr.2016.02.005
  7. Goddéris, Y., Hir, G.L., Macouin, M., Donnadieu, Y., Hubert-Théou, L., Dera, G., Aretz, M., Fluteau, F., Li, Z.X., Halverson, G.P., 2017. Paleogeographic forcing of the strontium isotopic cycle in the Neoproterozoic. Gondwana Research, 42, 151-162. doi.org/10.1016/j.gr.2016.09.013
  8. Liu, L., Li, Z., Li, S., Zhu, K., Cui, F.,2017. Early Cretaceous basin framework in northwest Jiaobei region: evidence from SHRIMP zircon U-Pb dating for “Penglai Group” at Qimudao. Marine Geology and Quarternary Geology, 37, 126-136 (in Chinese with English abstract).
  9. Hír, J., Venczel, M., Codrea, V., Rössner, G.E., Angelone, C., van den Hoek Ostende, L.W., Rosina, V.V., Kirscher, U., Prieto, J., 2017. Badenian and Sarmatian s.str. from the Carpathian area: Taxonomical notes concerning the Hungarian and Romanian small vertebrates and report on the ruminants from the Felsőtárkány Basin. Comptes Rendus Palevol, 6(3), 312-332. doi.org/10.1016/j.crpv.2016.11.006
  10. Sant, K., Kirscher, U., Reichenbacher, B., Pippèrr, M., Jung, D., Doppler, G., Krijgsman, W., 2017. Late Burdigalian sea retreat from the North Alpine Foreland Basin: new magnetostratigraphic age constraints. Global and Planetary Change, 152, 38-50.  doi.org/10.1016/j.gloplacha.2017.02.002
  11. Scholze, F., Wang, X., Kirscher, U., Kraft, J., Schneider, J.W., Götz, A.E., Joachimski, M.M., Bachtadse, V., 2017.  A multistratigraphic approach to pinpoint the Permian-Triassic boundary in continental deposits: The Zechstein–Lower Buntsandstein transition in Germany. Global and Planetary Change, 152, 129-151. doi.org/10.1016/j.gloplacha.2017.03.004
  12. Kirscher, U., Oms, O., Bruch, A.A., Shatilova, I., Chochishvili, G., Bachtadse, V., 2017. The Calabrian in the Western Transcaucasian basin (Georgia): Paleomagnetic constraints from the Gurian regional stage. Quaternary Science Reviews, 160, 96-107.  doi.org/10.1016/j.quascirev.2017.01.017
  13. Kirscher, U., Bachtadse, V., Mikolaichuk, A.V., Kröner, A., Alexeiev, D.V.,  2017. Palaeozoic evolution of the North Tianshan based on palaeomagnetic data – transition from Gondwana towards Pangaea. International Geology Review, 50(16), 2003-2020. doi.org/10.1080/00206814.2017.1308840
  14. Tao, N., Li, Z.X., Danišík, M., Evans, N. J., Batt, G. E., Li, W.-X., Pang, C.-J., Jourdan, F., Xu, Y.-G., and Liu, L.-P., 2017. Thermochronological record of Middle–Late Jurassic magmatic reheating to Eocene rift-related rapid cooling in the SE South China Block. Gondwana Research, 46, 191-203. doi.org/10.1016/j.gr.2017.03.003
  15. Liu, L.-P., Li, Z.-X., Danišík, M., Li, S., Evans, N., Jourdan, F., and Tao, N., 2017. Thermochronology of the Sulu ultrahigh-pressure metamorphic terrane: Implications for continental collision and lithospheric thinning. Tectonophysics, 712–713, 10-29. doi.org/10.1016/j.tecto.2017.05.003
  16. Spencer, C.J., Gunderson, K.L., Hoiland, C.W., Schleiffarth, W.K., 2017. Earth-Science Outreach Using an Integrated Social Media Platform. GSA Today, 27(8), 28-29.  doi.org/10.1130/GSATG333GW
  17. Meredith, A.S., Collins, A.S., Williams, S.E., Pisarevsky, S.A., Foden, J.D., Archibald, D.B., Blades, M.L., Alessio, B.L., Armistead, S., Plavsa, D., Clark. C., Müller, D., 2017. A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, 50, 84-134.  doi.org/10.1016/j.gr.2017.04.001
  18. Hopkinson, T.N., Harris, N.B.W., Warren, C.J., Spencer, C.J., Roberts, N.M.W., Horstwood, M.S.A., Parrish, R.R., EIMF, 2017. The identification and significance of pure sediment-derived granites. Earth and Planetary Science Letters, 467, 57-63. doi.org/10.1016/j.epsl.2017.03.018
  19. Böhme, M., Spassov, N., Ebner, M., Geraads, D., Hristova, L., Kirscher, U., Kötter, S., Linnemann, U., Prieto, J., Roussiakis, S., Theodorou, G., Uhlig, G., Winklhofer, M., 2017. Messinian age and savannah environment of the possible hominin Graecopithecus from Europe. PLOS ONE, 12(5), e0177347. doi.org/10.1371/journal.pone.0177347
  20. Martin, E.L., Collins, W.J., Kirkland, C.L., 2017. An Australian source for Pacific-Gondwanan zircons: Implications for the assembly of northeastern Gondwana. Geology, 45(8), 699-702.  doi.org/10.1130/G39152.1
  21. Bállico, M.B., Scherer, C.M.S., Mountney, N.P., Souza, E.G., Chemale, F., Pisarevsky, S.A., Reis, A.D., 2017. Wind-pattern circulation as a palaeogeographic indicator: Case study of the 1.5–1.6 Ga Mangabeira Formation, São Francisco Craton, Northeast Brazil. Precambrian Research, 298, 1-15. doi.org/10.1016/j.precamres.2017.05.005
  22. Spencer, C.J., Yakymchuk, C., Ghaznavi, M., 2017. Visualising data distributions with kernel density estimation and reduced chi-squared statistic. Geoscience Frontiers, 8(6), 1247-1252.  doi.org/10.1016/j.gsf.2017.05.002
  23. Mayr, C., Brandlmeier, B., Diersche, V., Stojakowits, P., Kirscher, U., Matzke-Karasz, R., Bachtadse, V., Eigler, M., Haas, U., Lempe, B., Reimer, P.J., Spötl, C., 2017. Nesseltalgraben, a new reference section of the last glacial period in southern Germany. Journal of Paleolimnology, 58(2), 213-229. doi.org/10.1007/s10933-017-9972-0
  24. Spencer, C.J., Roberts, N.M.W., Santosh, M., 2017. Growth, destruction, and preservation of Earth’s continental crust. Earth-Science Reviews, 172, 87-106. doi.org/10.1016/j.earscirev.2017.07.013
  25. Belica, M.E., Tohver, E., Poyatos-Moré, M., Flint, S., Parra-Avila, L.A., Lanci, L., Denyszyn, S., Pisarevsky, S.A., 2017. Refining the chronostratigraphy of the Karoo Basin, South Africa: magnetostratigraphic constraints support an Early Permian age for the Ecca Group. Geophysical Journal International, 211(3), 1354–1374. doi.org/10.1093/gji/ggx344
  26. Kirkland, C.L., Abello, F., Danišík, M., Gardiner, N.J., Spencer, C., 2017. Mapping temporal and spatial patterns of zircon U-Pb disturbance: A Yilgarn Craton case study. Gondwana Research, 52, 39-47.  doi.org/10.1016/j.gr.2017.08.004
  27. Ito H., Spencer C.J., Danišík M., Hoiland C.W., 2017. Magmatic tempo of Earth’s youngest exposed plutons as revealed by detrital zircon U-Pb geochronology. Scientific Reports, 7, 12457.  doi.org/10.1038/s41598-017-12790-w
  28. Spencer, C.J., Cavosie, A.J., Raub, T.D., Rollinson, H., Jeon, H., Searle, M.P., Miller, J.A., McDonald, B.J., Evans, N.J., Edinburgh Ion Microprobe Facility (EIMF), 2017. Evidence for melting mud in Earth’s mantle from extreme oxygen isotope signatures in zircon. Geology, 45(11), 975-978. doi.org/10.1130/G39402.1
  29. Maravelis, A.G., Chamilaki, E., Pasadakis, N., Zelilidis, A., Collins, W.J., 2017. Hydrocarbon generation potential of a Lower Permian sedimentary succession (Mount Agony Formation): Southern Sydney Basin, New South Wales, Southeast Australia. International Journal of Coal Geology, 183, 52-64. doi.org/10.1016/j.coal.2017.09.017
  30. Hoffman, P.F., Abbot, D.S., Ashkenazy, Y., Benn, D.I., Brocks, J.J., Cohen, P.A., Cox, G.M., Creveling, J.R., Donnadieu, Y., Erwin, D.H., Fairchild, I.J., Ferreira, D., Goodman, J.C., Halverson, G.P., Jansen, M.F., Le Hir, G., Love, G.D., Macdonald, F.A., Maloof, A.C., Partin, C.A., Ramstein, G., Rose, B.E.J., Rose, C.V., Sadler, P.M., Tziperman, E., Voigt, A., Warren, S.G., 2017. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 3(11), e1600983. doi.org/10.1126/sciadv.1600983
  31. Zhu, K.-Y., Li, Z.-X., Xia, Q.-K., Xu, X.-S., Wilde, S. A. and Chen, H.-L., 2017. Revisiting Mesozoic felsic intrusions in eastern South China: spatial and temporal variations and tectonic significance. Lithos, 294-295, 147-163.  doi.org/10.1016/j.lithos.2017.10.008
  32. Gladkochub D.P., Donskaya T.V., Zhang S., Pisarevsky S.A., Stanevich A.M., Mazukabzov A.M., Motova Z.L., 2017. Early stage of the Central Asian Orogenic Belt building: evidences from the southern Siberian craton. Geodynamics & Tectonophysics, 8(3), 461-463.  doi.org/10.5800/GT-2017-8-3-0262
  33. Playton, T.E., Hocking, R.M., Tohver, E., Hillburn, K., Haines, P.W., Trinajstic, K., Roelofs, B., Katz, D.A., Kirschvink, J.L., Grice, K., Montgomery, P., Hansma, J., Yan, M., Pisarevsky, S., Tulipani, S., Ratcliffe, K., Caulfield-Kerney, S., Wray, D., 2017. Integrated stratigraphic correlation of Upper Devonian platform-to-basin carbonate sequences, Lennard Shelf, Canning Basin, Western Australia: advances in carbonate margin-to-slope sequence stratigraphy and stacking patterns. In: Playton, T.E., Kerans, C., Weissenberger, J.A.W. (eds.) New Advances in Devonian Carbonates: Outcrop Analogs, Reservoirs, and Chronostratigraphy. SEPM Special Publication 107. SEPM (Society for Sedimentary Geology), 248-301. ISBN 978-56576-344-9. doi.org/10.2110/sepmsp.107.10
  34. Gladkochub, D.P., Donskaya, T.V., Sklyarov, E.V., Kotov, A.B., Vladykin, N.V., Pisarevsky, S.A., Larin, A.M., Salnikova, E.B., Saveleva, V.B., Sharygin, V.V., Starikova, A.E., Tolmacheva, E.V., Velikoslavinsky, S.D., Mazukabzov, A.M., Bazarova, E.P., Kovach, V.P., Zagornaya, N.Yu., Alymova, N.V., Khromova, E.A., 2017. The unique Katugin rare-metal deposit (southern Siberia): Constraints on age and genesis. Ore Geology Reviews, 91, 246-263.  doi.org/10.1016/j.oregeorev.2017.10.002
  35. Zhang, N., Dygert, N.J., Liang, Y., Parmentier, E.M., 2017. The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle. Geophysical Research Letters, 44(13), 6543–6552.  doi.org/10.1002/2017GL073702
  36. Ionov, D.A., Doucet, L.S., Pogge von Strandmann, P.A.E., Golovin, A.V., Korsakov, A.V., 2017. Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton. Chemical Geology, 475, 105-121. doi.org/10.1016/j.chemgeo.2017.10.038

2016

  1. Niu, J., Li, Z.X., Zhu, W.: Palaeomagnetism and geochronology of mid-Neoproterozoic Yanbian dykes, South China: implications for a c. 820–800 Ma true polar wander event and the reconstruction of Rodinia. In: Li, Z. X., Evans, D. A. D. & Murphy, J. B. (eds.), Supercontinent Cycles Through Earth History. Geological Society, London, Special Publications, 424, 191–211, 2016. doi.org/10.1144/SP424.11
  2. Evans, D.A.D., Li., Z.-X., Murphy, J.B.: Four-dimensional context of Earth’s supercontinents. In: Li, Z. X., Evans, D. A. D. & Murphy, J. B. (eds.), Supercontinent Cycles Through Earth History. Geological Society, London, Special Publications, 424, 1–14, 2016. doi.org/10.1144/SP424.12
  3. Cox, G.M., Halverson, G.P., Stevenson, R.K., Vokaty, M., Poirier, A., Kunzmann, M., Li, Z.-X., Denyszyn, S.W., Strauss, J.V., Macdonald, F.A., 2016, Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446, 89-99. doi.org/10.1016/j.epsl.2016.04.016
  4. Cox, G.M., Jarrett, A., Edwards, D., Crockford, P.W., Halverson, G.P., Collins, A.S., Poirier, A., Li, Z.-X., 2016, Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chemical Geology, 440, 101-114. doi.org/10.1016/j.chemgeo.2016.06.025
  5. Pang, C.J., Li, Z.X., Xu, Y.G., Wen, S.N., Krapež, B., 2016. Climatic and tectonic controls on Late Triassic to Middle Jurassic sedimentation in northeastern Guangdong Province, South China. Tectonophysics, 677–678, 68–87. doi.org/10.1016/j.tecto.2016.03.041
  6. Cen, T., Li, W., Wang, X., Pang, C., Li, Z.-X., Xing, G., Zhao, X., Tao, J., 2016. Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China. Lithos, 256-257, 311-330. doi.org/10.1016/j.lithos.2016.03.022
  7. Wang, Q., Hawkesworth, C.J., Wyman, D., Chung, S.L., Wu, F.Y., Li, X.H., Li, Z.X., Gou, G.N., Zhang, X.Z., Tang, G.J., Dan, W., Ma, L., Dong, Y.H., 2016. Pliocene–Quaternary crustal melting in central and northern Tibet with new insights into crustal flow. Nature Communications, 7, 11888.  doi.org/10.1038/ncomms11888
  8. Yao, W.H., Li, Z.X., 2016. Tectonostratigraphic history of the Ediacaran–Silurian Nanhua foreland basin in South China. Tectonophysics, 674, 31-51. doi.org/10.1016/j.tecto.2016.02.012
  9. Zhu, K.Y., Li, Z.X., Xu, X.S., Wilde, S.A., Chen, H.L., 2016. Early Mesozoic ferroan (A-type) and magnesian granitoids in eastern South China: Tracing the influence of flat-slab subduction at the western Pacific margin. Lithos, 240, 371–381. doi.org/10.1016/j.lithos.2015.11.025
  10. Zhu, W.G., Zhong, H., Li, Z.-X., Bai, Z.J., Yang, Y.J., 2016, SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca. 1.0 Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance. Precambrian Research, 273, 67-89. doi.org/10.1016/j.precamres.2015.12.011
  11. Peng, P., Ernst, R., Hou, G., Söderlund, U., Zhang, S., Hamilton, M., Xu, Y., Denyszyn, S., Mege, D., Pisarevsky, S., Srivastava, R., Kusky, T., 2016. Dyke swarms: keys to paleogeographic reconstructions. Science Bulletin, 61(21), 1669-1671. doi.org/10.1007/s11434-016-1184-x
  12. Metelkin, D.V., Vernikovsky, V.A., Tolmacheva, Matushkin, N.Yu., Zhdanova, A.I., Yu., Pisarevsky, S.A., 2016. First paleomagnetic data for the New Siberian Islands: Implications for Arctic paleogeography. Gondwana Research, 37, 308-323. doi.org/10.1016/j.gr.2015.08.008
  13. Pisarevsky, S.A., Rosenbaum, G., Shaanan, U., Hoy, D., Speranza, F., Mochales, T., 2016. Paleomagnetic and geochronological study of Carboniferous forearc basin rocks in the Southern New England Orogen (Eastern Australia). Tectonophysics, 681, 263-277. doi.org/10.1016/j.tecto.2016.01.029
  14. Cawood, P.A., Strachan, R.A., Pisarevsky, S.A., Gladkochub, D.P., Murphy, J.B., 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449, 118-126. doi.org/10.1016/j.epsl.2016.05.049
  15. Gladkochud, D.P., Donskaya, T.V., Mazukabzov, A.M., Pisarevsky, S.A., Ernst, R.E., Stenevich, A.M., 2016, The Mesoproterozoic mantle plume beneath the northern part of the Siberian craton. Russian Geology and Geophysics, 57, 672-686. doi.org/10.1016/j.rgg.2016.04.004
  16. Cederberg, J., Söderlund, U., Oliveira, E.P., Ernst, R.E., Pisarevsky, S.A., 2016. U-Pb baddeleyite dating of the Proterozoic Pará de Minas dyke swarm in the São Francisco craton (Brazil) – implications for tectonic correlation with the Siberian, Congo and North China cratons. GFF, 138(1), 219-240. doi.org/10.1080/11035897.2015.1093543
  17. Spencer, C.J., Harris, R.A., Major, J.R., 2016, Provenance of Permian-Triassic Gondwana sequence unit accreted to the Banda Arc: constraints from zircon U-Pb and Hf isotopes. Gondwana Research, 38, 28-39. doi.org/10.1016/j.gr.2015.10.012
  18. Kirkland, C.L., Spaggiari, C., Johnson, T., Smithies, H., Danisik, M., Evans N., Wingate, M., Clark, C., Spencer C., Mikucki, E., McDonald, B., 2016. Grain size matters: Implications for mobilization of radiogenic-Pb in titanite: an example from the Albany-Fraser Orogen. Precambrian Research, 278, 283-302. doi.org/10.1016/j.precamres.2016.03.002
  19. Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2016, Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology.  Geoscience Frontiers, 7, 581-589.  doi.org/10.1016/j.gsf.2015.11.006
  20. Thomas, R.J., Spencer, C.J., Bushi, A.M., Baglow, N., Boniface, N., de Kock, G., Horstwood, M.S.A., Hollick, L., Jacobs, J., Kajara, S., Kamihanda, G., Key, R.M., Maganga, Z., Mbawala., F., McCourt, W., Momburi, P., Moses, F., Mruma, A., Myambilwa, Y., Roberts, N.M.W., Saidi, H., Nyanda, P., Nyoka, K., Millar, I., 2016, Geochronology of the central Tanzania Craton and its southern and eastern orogenic margins. Precambrian Research, 277, 47-67.  doi.org/10.1016/j.precamres.2016.02.008
  21. Gardiner, N.J., Searle, M.P., Morley, C.K., Whitehouse, M.P., Spencer, C.J., Robb, L.J., 2016, The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: new insights from zircon U–Pb and Hf isotope data. Gondwana Research, 39, 401-422. doi.org/10.1016/j.gr.2015.03.001
  22. Thomas, R.J., Macey, P.H., Spencer, C.J., Dhansay, T., Diener, J.F.A., Lambert, C.W., Frei, D., Nguno, A., 2016, The Sperrgebiet Domain, Aurus Mountains, SW Namibia: A∼ 2020–850Ma window within the Pan-African Gariep Orogen. Precambrian Research, 286, 35-58. doi.org/10.1016/j.precamres.2016.09.023
  23. Hír, J., Venczel, M., Codrea, V., Angelone, C., van den Hoek Ostende, L.W., Kirscher, U., Prieto, J., 2016. Badenian and Sarmatian s.str. from the Carpathian area: Overview and ongoing research on Hungarian and Romanian small vertebrate evolution. Comptes Rendus Palevol, 15(7), 863-875. doi.org/10.1016/j.crpv.2016.08.001
  24. Kirscher, U., Prieto, J., Bachtadse, V., Aziz, H. Abdul, Doppler, G., Hagmaier, M., Böhme, M., 2016. A biochronologic tie-point for the base of the Tortonian stage in European terrestrial settings: Magnetostratigraphy of the topmost Upper Freshwater Molasse sediments of the North Alpine Foreland Basin in Bavaria (Germany). Newsletters on Stratigraphy, 49(3), 445-467. doi.org/10.1127/nos/2016/0288
  25. Spencer, C.J., Kirkland, C.L., 2016. Visualizing the sedimentary response through the orogenic cycle: a multi-dimensional scaling approach. Lithosphere, 8(1), 29-37. doi.org/10.1130/L479.1
  26. Buchan, K.L., Mitchell, R.N., Bleeker, W., Hamilton, M.A., LeCheminant, A.N., 2016. Paleomagnetism of ca. 2.13-2.11 Ga Indin and ca. 1.885 Ga Ghost dyke swarms of the Slave craton: Implications for the Slave craton APW path and relative drift of Slave, Superior and Siberian cratons in the Paleoproterozoic. Precambrian Research, 275, 151-175. doi.org/10.1016/j.precamres.2016.01.012

2015

  1. Yao, W., Li, Z., Li, W., 2015. Was there a Cambrian ocean in South China? – Insight from detrital provenance analyses. Geological Magazine, 152(1), 184-191. doi.org/10.1017/S0016756814000338
  2. Xu, X., Song, S., Su, L., Li, Z., Niu, Y., Allen, M.B., 2015. The 600–580 Ma continental rift basalts in North Qilian Shan, northwest China: Links between the Qilian-Qaidam block and SE Australia, and the reconstruction of East Gondwana. Precambrian Research 257, 47-64. doi.org/10.1016/j.precamres.2014.11.017
  3. Pisarevsky, S.A., De Waele, B., Jones, S., Söderlund, U., Ernst, R.E., 2015. Paleomagnetism and U–Pb age of the 2.4 Ga Erayinia mafic dykes in the south-western Yilgarn, Western Australia: Paleogeographic and geodynamic implications. Precambrian Research, 259, 222-231. doi.org/10.1016/j.precamres.2014.05.023
  4. Condie, K., Pisarevsky, S.A., Korenaga, J., Gardoll, S., 2015. Is the rate of supercontinent assembly changing with time? Precambrian Research, 259, 278-289. doi.org/10.1016/j.precamres.2014.07.015
  5. Huang, H.Q., Li, X.H., Li, Z.X., Li, W.X., 2015. Formation of the Jurassic South China Large Granitic Province: insights from the genesis of the Jiufeng pluton. Chemical Geology, 401, 43-58. doi.org/10.1016/j.chemgeo.2015.02.019
  6. Meng, L., Li, Z.X., Chen, H., Li, X.H., Zhu, C., 2015. Detrital zircon U–Pb geochronology, Hf isotopes and geochemistry constraints on crustal growth and Mesozoic tectonics of southeastern China. Journal of Asian Earth Sciences, 105, 286-299. doi.org/10.1016/j.jseaes.2015.01.015
  7. Lu, Y.J., McCuaig, T.C., Li, Z.X., Jourdan, F., Hart, C.J.R., Hou, Z.Q., Tang, S.H., 2015. Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: Mantle source and tectonic implications. Lithos, 233, 139-161. doi.org/10.1016/j.lithos.2015.02.003
  8. Shaanan, U., Rosenbaum, G., Pisarevsky, S., Speranza, F., 2015. Paleomagnetic data from the New England Orogen (eastern Australia) and implications for oroclinal bending. Tectonophysics, 664, 182-190. doi.org/10.1016/j.tecto.2015.09.018
  9. Yao, W.H., Li, Z.X., Li, W.X., Su, L., Yang, J.H., 2015. Detrital provenance evolution of the Ediacaran–Silurian Nanhua foreland basin, South China. Gondwana Research, 28(4), 1449-1465. doi.org/10.1016/j.gr.2014.10.018
  10. Li, Z.X., 2015. Paleogeographic record of Eocene Farallon slab rollback beneath western North America. Geology 43(4), e362-e362.  https://doi.org/10.1130/G36733C.1